Tensorflow—tfrecord数据集生成与使用

参考内容:

数据读取的官方教程:Tensorflow导入数据以及使用数据 

tfrecord数据集生成:

数据准备:图片数据+图片目录与label一一对应的的txt

先读取图片信息的txt文件,得到每个图片的路径以及它们的标签,然后对这个图片作一些预处理,最后将图片以及它对应的标签序列化,并建立图片和标签的索引(即以下代码的”img_raw”, “label”)。详见代码。 

import random
import tensorflow as tf
from PIL import Image

def create_record(records_path, data_path, img_txt):
    # 声明一个TFRecordWriter
    writer = tf.python_io.TFRecordWriter(records_path)
    # 读取图片信息,并且将读入的图片顺序打乱
    img_list = []
    with open(img_txt, 'r') as fr:
        img_list = fr.readlines()
    random.shuffle(img_list)
    cnt = 0
    # 遍历每一张图片信息
    for img_info in img_list:
        # 图片相对路径
        img_name = img_info.split(' ')[0]
        # 图片类别
        img_cls = int(img_info.split
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值