
深度学习从入门到实战
文章平均质量分 72
该专栏适合初学者学习深度学习;
目的:从初学者出发,让小白掌握深度学习的原理。
内容:每一个章节都包含理论详解和试验代码。
1. 感知器原理详解;
2.多层感知器详解;
3.BP算法详解;
4.全连接网络详解;
5.卷积神经网络详解;
6.循环神经网络详解;
AI学长与深度学习
学习的快乐在于知识的分享,不分享的知识将会毫无意义
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Attention的基本原理
Attention的思想如同它的名字一样,就是“注意力”,在预测结果时把注意力放在不同的特征上。原创 2024-03-08 00:05:25 · 475 阅读 · 0 评论 -
【YOLO】yolov5的训练策略3 -- 图像加权image weights
根据样本种类分布使用图像调用频率不同的方法解决。1、读取训练样本中的GT,保存为一个列表;2、计算训练样本列表中不同类别个数,然后给每个类别按相应目标框数的倒数赋值,数目越多的种类权重越小,形成按种类的分布直方图;3、对于训练数据列表,训练时按照类别权重筛选出每类的图像作为训练数据。使用random.choice(population, weights=None, *, cum_weights=None, k=1)更改训练图像索引,可达到样本均衡的效果。原创 2023-07-14 15:57:33 · 2771 阅读 · 3 评论 -
【YOLO】yolov5的训练策略2 -- 自动锚框autoanchor
在yolov5 中训练开始前,计算数据集标注信息针对默认锚定框的最佳召回率,当最佳召回率大于等于0.98时,则不需要更新锚定框;如果最佳召回率小于0.98,则需要重新计算数据集的锚定框,如果计算处理更好则更新原理的anchors。原创 2023-07-13 16:04:21 · 4259 阅读 · 0 评论 -
【YOLO】yolov5的训练策略1 -- 训练热身warmup
众所周知学习率是一个非常重要的超参数,直接影响着网络训练的速度和收敛情况。通常情况下,网络开始训练之前,我们会随机初始化权重,设置学习率过大会导致模型振荡严重,学习率过小,网络收敛太慢。那这个时候该怎么做呢?是不是有人会说,我前面几十个或者几百个epoch学习率设置小一点,后面正常后,设置大一点呢,没错这就是最简单的Warmup。原创 2023-07-13 14:31:10 · 2845 阅读 · 0 评论 -
第2章 单层感知器
1. 人工神经元的理解;2. 感知器模型3. 感知器模型是如何训练的原创 2023-03-12 20:46:46 · 1450 阅读 · 0 评论 -
第1章 深度学习的概述
内容:人工智能、机器学习、深度学习概念;深度学习的发展历史;深度学习的应用。原创 2023-02-06 17:16:17 · 1108 阅读 · 0 评论