undefined symbol: rl_basic_word_break_characters

博客介绍了R的编译命令,强调编译时with-readline不要选no,否则会影响RPY2并报错,还指出要先安装readline-devel。若找不到R_HOME,可修改setup.py代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编译R ./configure --enable-R-shlib=yes --with-tcltk --prefix=/opt/soft/R-3.3.1/ --with-readline=yes
with-readline千万不要选no,影响RPY2 默认为yes

否则报错undefined symbol: rl_basic_word_break_characters

当然首先要安装 yum install readline-devel

Traceback (most recent call last):
  File "/appli/python/2.7.5_gnu-4.8.0/python-2.7.5/lib/python2.7/runpy.py", line 162, in _run_module_as_main
    "__main__", fname, loader, pkg_name)
  File "/appli/python/2.7.5_gnu-4.8.0/python-2.7.5/lib/python2.7/runpy.py", line 72, in _run_code
    exec code in run_globals
  File "/appli/pythonmods/rpy2-2.3.9/build/lib.linux-x86_64-2.7/rpy2/tests.py", line 2, in <module>
    import sys, rpy2.rinterface
  File "/appli/pythonmods/rpy2-2.3.9/build/lib.linux-x86_64-2.7/rpy2/rinterface/__init__.py", line 101, in <module>
    from rpy2.rinterface._rinterface import *
ImportError: /appli/pythonmods/rpy2-2.3.9/build/lib.linux-x86_64-2.7/rpy2/rinterface/_rinterface.so: undefined symbol: rl_basic_word_break_characters

如果找不到R_HOME可以修改代码setup.py

r_home = subprocess.check_output((r_bin, "RHOME"),universal_newlines=True)

改为

r_home = /opt/soft/R-3.3.1

sudo python setup.py build install
### 解决 `undefined symbol: __nvJitLinkComplete_12_4` CUDA 错误 遇到此类未定义符号错误通常意味着存在库版本不匹配或依赖项缺失的情况。具体到此案例,可能是由于 PyTorch 版本与 NVIDIA 的 cuSPARSE 库之间的兼容性问题所引起的。 #### 诊断方法 当出现类似 `ImportError: ... undefined symbol: __nvJitLinkComplete_12_4...` 这样的提示时,表明程序尝试加载的共享对象文件(`.so` 文件)缺少某些预期中的函数实现[^1]。 #### 可能的原因分析 - 安装了最新版 PyTorch 后,默认情况下可能会拉取最新的 CUDA 工具包及相关组件,而这些新版本可能尚未完全适配当前环境下的其他软件栈。 - 如果环境中同时存在多个不同版本的 CUDA 或者相关工具链,则可能导致路径冲突,使得应用程序链接到了错误版本的动态库上[^2]。 #### 推荐解决方案 为了修复上述提到的导入失败问题,建议采取以下措施之一: ##### 方法一:调整 Conda 环境配置 通过指定特定版本来创建新的 conda 虚拟环境,并确保所有必要的依赖都来自同一套件源。例如: ```bash conda create -n opencompass python=3.10 pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch -c nvidia ``` 这一步骤可以有效避免因混用不同版本而导致的功能接口差异引发的问题。 ##### 方法二:手动更新或重新安装 CUDA 和 cuDNN 如果已经有一个现成的工作环境但仍然遭遇类似的错误消息,那么考虑单独下载并安装相匹配版本的 CUDA Toolkit 和 cuDNN SDK 到本地系统中去。之后再相应地设置好 LD_LIBRARY_PATH 等环境变量指向正确的目录位置即可。 ##### 方法三:清理现有缓存重试 有时候旧有的编译产物残留也可能造成干扰,在执行任何更改之前先清除掉 pip 缓存以及 Anaconda 下载缓存后再做尝试往往会有意想不到的效果: ```bash pip cache purge && conda clean --all ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值