本期分享一个Python工具d3blocks,可轻松将JavaScript中的D3.js强交互可视化能力延续到Python中。
一个实例, PCA图、tSNE图,
可以看到,d3blocks的结果是可交互的,可轻松实现结果的局部选取、每个点数据显示、展示模式切换(左下侧PCA、tSNE插件)等。
而且只需几行Python代码,告别D3.js的长代码,此处使用d3.scatter()函数,
# 导入d3blocks
from d3blocks import D3Blocks
import numpy as np
# 初始化
d3 = D3Blocks()
# 数据准备
df = d3.import_example('mnist')
size = np.random.randint(0, 8, df.shape[0])
opacity = np.random.randint(0, 8, df.shape[0]) / 10
tooltip = df['y'].values.astype(str)
# 绘图
d3.scatter(
df['PC1'].values, # PCA图主成分PC1 x轴数据
df['PC2'].values, # PCA图主成分PC2 y轴数据
x1=df['tsne_1'].values, # tSNE图x轴数据
y1=df['tsne_2'].values, # tSNE图y轴数据
color=df['y'].values.astype(str),
tooltip=tooltip, # 设置点的值
size=size,
opacity=opacity, # 设置点透明度
stroke='#000000',
cmap='tab20', # 设置Colormap
scale=True,
label_radio=['PCA', 'tSNE'],
figsize=[1024, 768],
filepath='scatter_demo.html', #设置结果名称,结果为网页html格式
)
在看一个案例,网络图使用d3.d3graph()函数,
再看一个案例,桑基图(Sankey diagram),使用d3.sankey()函数,
from d3blocks import D3Blocks
d3 = D3Blocks()
df = d3.import_example('energy')
d3.sankey(df,
title='Sankey - d3blocks',
filepath='sankey.html',
figsize=(800, 600),
node={"align": "justify", "width": 15, "padding": 15, "color": "currentColor"},
link={"color": "source-target", "stroke_opacity": 0.5},
margin={"top": 5, "right": 1, "bottom": 5, "left": 1},
showfig=True,
overwrite=True)
再看一个案例,图像展示(imageslider),当需要比较实验前后结果差异时,非常好用,
此外,还支持时间序列图(d3.timeseries())、heatmap图(d3.heatmap())、气泡图(d3.movingbubbles())等,不一一举例,用法都很一致,传送门https://github.com/d3blocks/d3blocks