ygdd
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLOv5非极大值抑制函数non_max_suppression详解
YOLOv5非极大值抑制函数non_max_suppression详解原创 2025-08-05 20:34:20 · 7 阅读 · 0 评论 -
YOLOv5前处理函数 letterbox 详解
输出图像宽 640 高 640,非纯色填充区域宽 640 高 480,顶部灰色填充区域的高度为80,底端灰色填充区域的高度为80。原创 2025-08-05 11:43:24 · 64 阅读 · 0 评论 -
MNN编译和demo运行
MNN编译和demo运行原创 2025-08-04 12:16:00 · 152 阅读 · 0 评论 -
yolov5-6.0调测记录
直接运行yolov5-6.0/detect.py,输出如下:image 1/2 C:\Users\dun\Downloads\yolov5-6.0\data\images\bus.jpg: 640x480 4 persons, 1 bus, Done. (0.216s)image 2/2 C:\Users\dun\Downloads\yolov5-6.0\data\images\zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.166s)Speed:原创 2024-04-20 19:05:44 · 583 阅读 · 1 评论 -
pytorch环境配置踩坑记录
step b:打开C:\Users\用户名这个文件夹,找到名为.condarc的文件,将其内容改成以下内容。step a:如果C:\Users\用户名这个文件夹没有名为.condarc的文件,执行以下命令创建一个。step c:重新执行以下命令。原创 2024-04-19 21:54:38 · 1000 阅读 · 0 评论 -
PyTorch深度学习快速入门教程——代码实践
PyTorch深度学习快速入门教程——代码实践原创 2024-04-14 16:33:41 · 95 阅读 · 0 评论 -
pytorch Neural Networks学习笔记
(5)卷积层2,滤波器的shape为16×6×5×5,滤波器个数16,通道数6,高5,宽5。卷积层2的输出为16×10×10。(7)池化层,滤波器的大小为2×2,stride为2×2,输出为16×5×5。(2)卷积层1,滤波器的shape为6×1×5×5,滤波器个数6,通道数1,高5,宽5。(4)池化层,滤波器的大小为2×2,stride为2×2,输出为6×14×14。(8)全连接层1,权重的shape为400×120,输出为1×120。(10)全连接层2,权重的shape为120×84,输出为1×84。原创 2024-04-13 19:39:50 · 318 阅读 · 1 评论