
NLP
文章平均质量分 62
自然语言处理
心灵Haven
心若有所栖,何似风飘渺。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
13-day10生成式任务
现在完全使用teacher-forcing的方法,放弃在训练时做解码来换取更高的训练速度。自回归语言模型也是teacher-forcing方式。Bert是encoder-only结构,自回归语言模型是decoder-only结构。在人工智能的各个领域都有,包括很多跨领域任务。来源于soft-attention的修改。图像领域:图像/视频生成, 图像补全等。输出Y没有预设的范围,受输入X影响。输入输出均为不定长的序列。语音领域:语音合成等。文本领域:机器翻译等。原创 2025-08-04 00:06:33 · 191 阅读 · 0 评论 -
12-day09序列标注任务
分词,词性标注,句法分析,命名实体识别等。评价指标看<evaluate.py>文件。序列标注准确率 ≠ 实体挖掘准确率。区别在于是否考虑类别样本数量的均衡。实体需要完整命中才能算正确。对于标注序列要进行解码。命名实体识别-十分类。原创 2025-07-28 00:20:36 · 420 阅读 · 0 评论 -
11-day08文本匹配
每组问答对中的问题,有多个时,为其中代表。一个(或多个相似的)问题与它对应的答案。问答对中,标准问之外的其他问题。人工编辑faq库的过程。2.faq库/知识库。很多问答对组成的集合。原创 2025-07-24 23:40:25 · 441 阅读 · 0 评论 -
10-day07文本分类
建立 K(K - 1)/2 个svm分类器,每个分类器负责K个类别中的两个类别,判断输入样本属于哪个类别。建立K个svm分类器,每个分类器负责划分输入样本属于K个类别中的“某一个类别,还是其他类别”对于一个待预测的样本,使用所有分类器进行分类,最后保留被预测词数最多的类别。1.少数支持向量决定了最终结果,对异常值不敏感。1.少数支持向量决定了最终结果,对异常值不敏感。假设要解决一个K分类问题,即有K个目标类别。one vs one方式。3.可以处理高维度数据。3.可以处理高维度数据。原创 2025-07-20 23:56:14 · 439 阅读 · 0 评论 -
9-day06参数量和显存占用计算
1B模型参数对应多少G内存和参数的精度有关,如果是全精度训练(fp32),一个参数对应32比特,也就是4个字节,参数换算到显存的时候要乘4,也就是1B模型参数对应4G显存,如果是fp16或者bf16就是乘2,1B模型参数对应2G显存。1字节(Byte)通常由8个比特组成,FP32使用4字节(32位)表示一个浮点数,而FP16使用2字节(16位)表示一个浮点数。而"1M"的全称是"1 Million",表示一百万。显存有多少G/M是说有多少G/M个字节(byte),1个字节=8比特(bit)。原创 2025-06-25 22:47:02 · 216 阅读 · 0 评论 -
8-day06预训练模型
【代码】8-day06预训练模型。原创 2025-07-11 22:31:41 · 275 阅读 · 0 评论 -
7-day06语言模型
通俗来讲语言模型评价一句话是否“合理”或“是人话”数学上讲P(今天天气不错) > P(今错不天天气)语言模型用于计算文本的成句概率。原创 2025-07-10 23:05:33 · 355 阅读 · 0 评论 -
6-day05 词向量应用
一、根据词与词之间关系的某种假设,制定训练目标二、设计模型,以词向量为输入三、随机初始化词向量,开始训练四、训练过程中词向量作为参数不断调整,获取一定的语义信息五、使用训练好的词向量做下游任务。原创 2025-07-04 01:42:10 · 285 阅读 · 0 评论 -
5-day04 TF·IDF关键词算法
import os"""tfidf的计算和使用"""#统计tf和idf值tf_dict = defaultdict(dict) #key:文档序号,value:dict,文档中每个词出现的频率idf_dict = defaultdict(set) #key:词, value:set,文档序号,最终用于计算每个词在多少篇文档中出现过#根据tf值和idf值计算tfidf#输入语料 list of string#先进行分词#根据tfidf字典,显示每个领域topK的关键词。原创 2025-07-01 23:42:02 · 189 阅读 · 0 评论 -
4-深度学习网络层
也可以使用预训练的词向量来做初始化,此时也可以选择不训练Embedding层中的参数。输入的整数序列可以有重复,但取值不能超过Embedding矩阵的列数。Embedding矩阵是可训练的参数,一般会在模型构建时随机初始化。在nlp任务和各类特征工程中应用广泛。核心价值:将离散值转化为向量。原创 2025-06-23 23:12:16 · 157 阅读 · 0 评论 -
3-优化器原理
更多参考原创 2025-06-23 22:51:56 · 241 阅读 · 0 评论 -
2-激活函数与损失函数
目标:为模型添加非线性因素,使模型具有拟合非线性函数的能力。原创 2025-06-23 00:46:40 · 202 阅读 · 0 评论 -
1-梯度下降法与反向传播
1.根据输入x和模型当前权重,计算预测值y’2.根据y’和y使用loss函数计算loss。4.使用梯度和学习率,根据优化器调整模型权重。目标:找到合适的x值,使得f(x)最小。3.根据loss计算模型权重的梯度。函数f(x)的值受x影响。原创 2025-06-23 00:25:09 · 184 阅读 · 0 评论 -
0-机器学习简介
机器学习本质:从已知数据中找规律,用来预测未知的样本。深度学习:是机器学习的一种方法。原创 2025-06-22 22:40:32 · 185 阅读 · 0 评论