用IDEA开发spark应用,发生java.lang.ClassNotFoundException的解决

在使用IDEA开发Spark应用时,编译成功但在运行时遇到`java.lang.ClassNotFoundException`,异常指向net.xxxx.spark.LogReg$$anonfun$1。问题在于29行,但将代码打包通过spark-submit提交到Spark服务器则正常运行。解决方法是修改代码的第3行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前的一篇转载介绍了用IDEA开发spark应用的配置方法。在完成配置之后,我写了下面的demo code。

object LogReg {
  def main (args: Array[String]) {
    val conf = new SparkConf().setAppName("spark demo").setMaster("spark://master.local:7077")
    val sc = new SparkContext(conf)

    // parse the dimension
    if (args.length != 1) {
      System.err.println("Need one argument")
      System.exit(-1)
    }
    val dimension = Integer.parseInt(args(0))
    System.out.println("Dimension = " + dimension)

    // load the training data
    val trainData = MLUtils.loadLibSVMFile(sc,
                  "hdfs://master.local:9000/user/xxxx/input/out5_training.log",
                  dimension)
    // train
    val numIterations = 100
    val model = LogisticRegressionWithSGD.train(trainData, numIterations)

    val valuesAndPreds = trainData.map { point =>
      val prediction = model.predict(point.features)
      (prediction, point.label)
    }

    val trainErrors = valuesAndPreds.filter{case (v,p) => v != p}

    val trainErr = trainErrors.count.toDouble / trainData.count
        System.out.println("Training error = " + trainErr)

    // test
    val testData = MLUtils.loadLibSVMFile(sc,
                  "hdfs://master.local:9000/user/xxxx/input/out5_testing.log",
                  dimension)
    val testAndPreds = testData.map { point =>
      val prediction = model.predict(point.features)
      (prediction, point.label)
    }
    va
### Spark 运行时出现 `java.lang.ClassNotFoundException` 的原因及解决方案 #### 1. 报错原因分析 `java.lang.ClassNotFoundException` 是 Java 虚拟机抛出的一个异常,表示尝试加载某个类时未能找到对应的字节码文件。对于 Spark 应用程序来说,这种错误通常发生在以下几种情况之一: - **依赖缺失**:应用程序所需的 JAR 文件未被正确打包或分发到执行环境中[^2]。 - **classpath 配置不正确**:运行环境的 classpath 中缺少必要的库文件[^3]。 - **作用域冲突**:在 Maven 或 Gradle 构建工具中,某些依赖项的作用域设置为 `provided`,这可能导致这些依赖不会被打包到最终的应用程序中[^5]。 具体到当前问题,以下是几个可能的原因及其对应场景: - 如果报错信息显示 `org.apache.spark.kafka010.KafkaConfigUpdater` 缺失,则可能是 Kafka 相关的 JAR 文件未正确引入[^1]。 - 若提示 `com.mysql.jdbc.Driver` 或 `com.mysql.cj.jdbc.Driver` 类找不到,则表明 MySQL JDBC 驱动程序未包含在 Spark 的运行环境中[^4]。 - 当遇到 `org.slf4j.Logger` 错误时,通常是由于 SLF4J 日志框架的相关配置不当引起的。 --- #### 2. 解决方案 ##### 方法一:确认并添加缺失的依赖项 如果问题是由于缺少特定的 JAR 文件引起,可以通过手动下载相应的库并将它们放置于 Spark 的 lib 目录下。例如,在处理 MySQL 数据源时,可以按照以下步骤操作: 1. 下载最新版的 MySQL Connector/J (https://dev.mysql.com/downloads/connector/j/)。 2. 将下载好的 JAR 文件复制至 Spark 安装路径下的 jars 子目录中,比如 `/opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567/lib/spark/jars/`。 ```bash cp mysql-connector-java-x.x.xx.jar /opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567/lib/spark/jars/ ``` ##### 方法二:调整构建工具中的依赖范围 如果是通过 Maven 或 Gradle 打包项目,需注意避免将重要依赖标记为 `provided`。因为此标签意味着该依赖仅用于编译阶段而不会随应用一起部署。针对这种情况,建议移除 `<scope>provided</scope>` 标签或将它替换为默认值(即 compile)。修改后的 POM.xml 示例如下所示: ```xml <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>x.x.xx</version> </dependency> ``` ##### 方法三:扩展 ClassPath 设置 有时即使存在所需 jar 包但仍会触发此类异常,这时可考虑扩大 spark 默认使用的 classloader 加载路径。一种常见做法是在 `$SPARK_HOME/conf/spark-env.sh` 文件里追加一行命令来动态获取 Hadoop 提供的所有额外资源位置作为补充输入给定参数列表。 ```bash export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath) ``` --- ### 总结 上述方法涵盖了大部分由 `java.lang.ClassNotFoundException` 导致的问题解决思路。实际操作过程中应先仔细阅读完整的堆栈跟踪日志以定位确切丢失的目标类别名称;随后依据目标类别归属领域选取恰当措施予以修复即可恢复正常运作状态。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值