实时数仓和离线数仓的区别是什么?企业如何选择合适的数仓架构?

实时数仓和离线数仓的区别是什么?企业如何选择合适的数仓架构?

时数仓和离线数仓都是数据仓库的不同类型,用于存储和管理企业的数据,但它们在数据处理和使用的时间、速度以及用途方面有明显的区别。

在介绍实时数仓之前,我们理应先来了解一下传统的离线数仓。毕竟在企业早期的数据建设规划中,在数据实时性要求不高的前提下,基本一开始都会选择建设离线数仓。

一、离线数仓

  1. 离线数仓是什么?
    离线数仓(Offline Data Warehouse)是一个用于存储和处理批处理数据的系统。它的特点是数据的处理和分析是基于批处理作业进行的,通常以较长的时间周期为单位。传统离线数仓的数据时效性是 T+1,调度频率以天为单位,无法支撑实时场景的数据需求。即使能将调度频率设置成小时,也只能解决部分时效性要求不高的场景,对于实效性要求很高的场景还是无法优雅的支撑。

  2. 离线数仓的特点
    批处理:离线数仓通过批处理作业处理数据,这意味着数据在一定时间周期内收集、存储,然后一次性处理。

高容量:离线数仓通常设计用于存储大量历史数据。

延迟较高:由于数据处理是批处理的,因此离线数仓不适合需要实时或近实时数据的应用。

  1. 离线数仓的适用场景
    需要进行历史数据分析、报告生成的应用,如销售报告、月度财务报表等。

数据量较大且处理时间不是关键问题的应用。

但是随着企业的发展,数据量日益增大,传统数据的方案在时效性上和数据维护上变得越来越困难。这时,实时数仓应运而生。

二、实时数仓

  1. 实时数仓是什么?
    实时数仓(Real-time Data Warehouse)是一个用于存储和处理实时数据的系统。它的主要特点是数据的处理和分析是即时进行的,数据几乎立即进入数仓并可以立即用于分析和决策。

  2. 实时数仓的特点
    低延迟:实时数仓能够在数据产生后迅速将其捕捉和处理,通常以秒或亚秒级的速度。

数据流处理:实时数仓通常使用流式处理技术来处理数据,这允许数据在进入仓库时立即进行转换和计算。

实时分析:数据可以用于实时监控、仪表板、预测和决策支持。

高吞吐量:实时数仓需要处理大量的数据流,因此需要具备高吞吐量的性能。

复杂性:由于需要处理实时数据流,实时数仓的架构和技术通常比较复杂。

  1. 实时数仓的适用场景
    需要实时监控业务指标的应用,如金融交易看板、实时销售报表、在线广告投放分析等。

需要立即采取行动以应对实时事件的应用,如异常监测大屏、欺诈实时检测等。

三、由数仓需求变化带来的数据仓库架构的演变
从1990年 Inmon 提出数据仓库概念到今天,数仓架构经历了最初的传统数仓架构、离线大数据架构、Lambda 架构、Kappa 架构以及由Flink 的火热带出的流批一体架构,数据架构技术不断演进,本质是在往流批一体的方向发展,让用户能以最自然、最小的成本完成实时计算。

  1. 传统数仓架构

这是比较传统的一种方式,结构或半结构化数据通过离线ETL定期加载到离线数仓,之后通过计算引擎取得结果,供前端使用。这里的离线数仓+计算引擎,通常是使用大型商业数据库来承担,例如Oracle、DB2、Teradata等。

  1. 离线大数据架构
    随着数据规模的不断增大,传统数仓方式难以承载海量数据。随着大数据技术的普及,采用大数据技术来承载存储与计算任务。数据源通过离线的方式导入到离线数仓中。下游应用根据业务需求选择直接读取 DM 或加一层数据服务,比如 MySQL 或 Redis。

数据仓库从模型层面分为三层:

ODS,操作数据层,保存原始数据;

DWD,数据仓库明细层,根据主题定义好事实与维度表,保存最细粒度的事实数据;

DM,数据集市/轻度汇总层,在 DWD 层的基础之上根据不同的业务需求做轻度汇总。

当然,也可以使用传传统数据库集群或MPP架构数据库来完成。例如Hadoop+Hive/Spark、Oracle RAC、GreenPlum等。

  1. Lambda架构
    随着业务的发展,随着业务的发展,人们对数据实时性提出了更高的要求。此时,出现了Lambda架构,其将对实时性要求高的部分拆分出来,增加条实时计算链路。从源头开始做流式改造,将数据发送到消息队列中,实时计算引擎消费队列数据,完成实时数据的增量计算。与此同时,批量处理部分依然存在,实时与批量并行运行。最终由统一的数据服务层合并结果给于前端。一般是以批量处理结果为准,实时结果主要为快速响应。

  2. Kappa架构
    而Lambda架构,一个比较严重的问题就是需要维护两套逻辑。一部分在批量引擎实现,一部分在流式引擎实现,维护成本很高。此外,对资源消耗也较大。随后诞生的Kappa架构,正是为了解决上述问题。其在数据需要重新处理或数据变更时,可通过历史数据重新处理来完成。方式是通过上游重放完成(从数据源拉取数据重新计算)。

可Kappa架构最大的问题是流式重新处理历史的吞吐能力会低于批处理,但这个可以通过增加计算资源来弥补。

  1. 混合架构
    上述架构各有其适应场景,有时需要综合使用上述架构组合满足实际需求。当然这也必将带来架构的复杂度。用户应根据自身需求,有所取舍。在一般大多数场景下,是可以使用单一架构解决问题。现在很多产品在流批一体、海量、实时性方面也有非常好的表现,可以考虑这种“全能手”解决问题。

综上所述,数仓建设是企业数据管理和决策支持的关键环节,在实践中,企业需要根据自身业务需求和数据规模,选择合适的数仓建设方案和技术方案,以提高企业数据资产的价值和利用效率。

FineDataLink——小到数据库对接、API对接、行列转换、参数设置,大到任务调度、运维监控、实时数据同步、数据服务API分享,另外它可以满足数据实时同步的场景,应有尽有,功能很强大。

### 实时数仓离线数仓区别及适用场景 实时数据仓库(Real-Time Data Warehouse)离线数据仓库(Offline Data Warehouse)是两种不同的数据处理架构,主要区别在于数据的处理方式、更新频率以及应用场景。以下是两者的具体对比: #### 1. 数据处理方式 - **离线数仓**:以批处理为主,数据通常按照固定的时间周期(如每日、每周或每月)进行抽取、转换加载(ETL)。这种模式适合处理历史数据静态数据[^3]。 - **实时数仓**:通过流式计算框架(如Flink、Spark Streaming)对数据进行实时处理,能够立即响应数据变化并提供即时分析结果。这种模式适合需要快速反馈的应用场景[^2]。 #### 2. 数据更新频率 - **离线数仓**:数据更新频率较低,通常为定期更新(如每天一次或每周一次),适用于对时效性要求不高的业务分析任务[^1]。 - **实时数仓**:数据可以实时更新,延迟通常在秒级甚至毫秒级,适用于需要快速决策的场景,例如实时监控、告警系统等[^4]。 #### 3. 技术实现 - **离线数仓**:常用的技术栈包括HDFS、Hive等,主要用于大规模数据的存储批量处理。 - **实时数仓**:常用的技术栈包括Kafka、Flink、Redis、Druid等,支持高吞吐量的实时数据流处理快速查询。 #### 4. 存储与查询性能 - **离线数仓**:更注重数据的完整性稳定性,查询性能可能相对较慢,但可以通过优化查询逻辑来提升效率。 - **实时数仓**:更注重查询效率实时性,适合频繁读取快速响应的场景。常用的存储引擎如ClickHouse、Apache Druid等能够在保证高性能的同时支持复杂的查询需求。 #### 5. 适用场景 - **离线数仓**:适用于需要分析历史数据的场景,例如月度报表生成、用户行为分析、市场趋势预测等。这些场景对数据的实时性要求不高,但需要处理大量历史数据[^3]。 - **实时数仓**:适用于需要实时反馈的场景,例如金融交易监控、广告投放效果分析、用户行为实时分析等。这些场景要求系统能够快速响应数据变化,并提供即时的分析结果。 ```python # 示例代码:使用Flink构建实时数仓 from pyflink.datastream import StreamExecutionEnvironment from pyflink.table import StreamTableEnvironment # 初始化Flink环境 env = StreamExecutionEnvironment.get_execution_environment() t_env = StreamTableEnvironment.create(env) # 注册Kafka数据源 t_env.execute_sql(""" CREATE TABLE kafka_source ( user_id BIGINT, event_time TIMESTAMP(3), event STRING ) WITH ( 'connector' = 'kafka', 'topic' = 'events', 'properties.bootstrap.servers' = 'localhost:9092', 'format' = 'json' ) """) # 注册ClickHouse数据目标 t_env.execute_sql(""" CREATE TABLE clickhouse_sink ( user_id BIGINT, event_count BIGINT, window_start TIMESTAMP(3), window_end TIMESTAMP(3) ) WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:clickhouse://localhost:8123/default', 'table-name' = 'event_counts' ) """) # 实时数据处理逻辑 t_env.execute_sql(""" INSERT INTO clickhouse_sink SELECT user_id, COUNT(*) AS event_count, TUMBLE_START(event_time, INTERVAL '1' MINUTE) AS window_start, TUMBLE_END(event_time, INTERVAL '1' MINUTE) AS window_end FROM kafka_source GROUP BY user_id, TUMBLE(event_time, INTERVAL '1' MINUTE) """) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数字天下

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值