【2022.1自蒸馏】ADAPTIVE IMAGE INPAINTING自适应图像修复简要概述

本文提出了一种结合交叉蒸馏和自蒸馏的图像修复方法,通过深度特征级引导和专用填充块增强编码器。交叉蒸馏利用完整图像的特征指导训练,而自蒸馏则将深层知识传递到浅层。填充块设计用于动态更新孔洞区域,通过轻量级并行残差块和自适应卷积。实验结果表明这些技术能有效提升图像修复性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【2022.1自蒸馏】ADAPTIVE IMAGE INPAINTING简要概述

自适应图像修复

在这里插入图片描述
  本文主要内容:交叉蒸馏+自蒸馏+动态提取模块
在这里插入图片描述
  我们提出了一种基于蒸馏的嵌入方法,该方法对编码器层采用深度特征级引导,从而产生更好的孔区域嵌入。

  为了更有效地实现蒸馏目标,我们提出在编码器中使用专用的填充块,它只专注于更新孔区域。
在这里插入图片描述

1.1交叉蒸馏:

   训练现成的(off-the-shelf)不完整的(under-complete)自编码器用来重构 GT(Ground Truth地面实况)图像。

  教师:输入的GT图像样本是完整的,提取它包含缺失信息的特征,用来监督训练图像修复解码器。如下图,下方的网络往上层提供监督。

  注意:教师网络不是静态的,是随着训练进程动态演化的。
在这里插入图片描述
  使用元网络来决定autoencoder (AE)自编码器的哪些层对图像修复是有用的,用于改变每层监督的权重。
在这里插入图片描述

1.2 自蒸馏

  每层加入自蒸馏,将较深层的知识压缩到浅层网络中。见figure1的上方网络中深层指向浅层的箭头。

  交叉蒸馏提升编码器的性能,自蒸馏把这样的提高从深层流向浅层。

  自蒸馏:浅层学习后层,其中注意每层特征大小不一,需用fm卷积算子匹配。
在这里插入图片描述

1.3 填充块

  提出结构修改+编码器的填充块,旨在利用未覆盖的区域去填充损坏区域:在每一层使用轻量并行的残差块提取编码特征,并建立权值和偏移值可变的自适应卷积层,用来更新孔洞区域。

  即:每层再添加一个动态模块ffill来专门用于填补孔洞。见figure1上层网络中的绿色块。
在这里插入图片描述

实验结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值