使用nvidia jetson xavier nx调用usb摄像头时报错

当使用OpenCV调用USB摄像头时遇到size.width>0&&size.height>0的错误,通常是由于设置的分辨率或帧率超出摄像头支持范围。解决方法包括安装v4l2-ctl来检查摄像头设备,查看其支持的分辨率和帧率,并调整代码中相应的参数。通过设置合适的分辨率(如640*480)和帧率(如25fps),可以成功调用并显示摄像头画面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

报错内容

在这里插入图片描述
cv2.error: OpenCV(4.1.1) /home/nvidia/host/build_opencv/nv_opencv/modules/highgui/src/window.cpp:352: error: (-215:Assertion failed) size.width>0 && size.height>0 in function ‘imshow’

报错原因

设置的分辨率、帧率不在USB摄像头支持的可用分辨率、帧率之内

解决方法

该视频提供了解决方法https://www.bilibili.com/video/av838776544/

安装v4l2-ctl检查摄像头上的设备

sudo apt install v4l-utils

检查设备上Camera清单

v4l2-ctl --device=/dev/video1 --list-formats-ext

含有两个摄像头,/dev/video1为usb摄像头

查看usb摄像头可用的分辨率

v4l2-ctl --device=/dev/video1 --list-formats-ext

USB摄像头可用的分辨率及其对应的帧率

调用usb摄像头demo

将帧率设为640 * 480, 帧率设为25后,成功调用了usb摄像头

import cv2
  
# use camera 0
# camSet = 'nvarguscamerasrc sensor-id=0 ! video/x-raw(memory:NVMM), width=3264, height=2464, framerate=21/1, format=NV12 ! nvvidconv flip-method=2 ! video/x-raw, width=640, height=480, format=BGRx ! videoconvert ! video/x-raw, format=BGR ! appsink'

camSet = 'v4l2src device=/dev/video1 ! video/x-raw,width=640,height=480,framerate=25/1 ! videoconvert ! appsink'

cam = cv2.VideoCapture(camSet)
while True:
    _, frame = cam.read()
    cv2.imshow('myCam', frame)
    cv2.moveWindow('myCam', 0, 0)
    if cv2.waitKey(1) == ord('q'):
        break
cam.release()
cv2.destroyAllWindows()
### Nvidia Jetson Xavier NX 上部署 YOLOv8 的教程 #### 环境准备 为了成功在 Nvidia Jetson Xavier NX 上部署 YOLOv8 模型,首先需要完成设备的基础环境配置。这包括硬件扩展支持以及软件开发工具链的搭建。 - **存储空间扩展** 由于 Jetson Xavier NX 默认 eMMC 存储仅有 16GB,不足以满足复杂模型训练和推理的需求,建议通过 TF 卡作为系统盘来增加可用存储容量[^3]。具体操作涉及安装适配的 TF 卡驱动程序并重新配置启动顺序以优先加载外部存储介质中的操作系统。 - **CUDA 和 cuDNN 安装** CUDA 是 NVIDIA 提供的一种并行计算平台及编程模型,cuDNN 则是一套针对深度神经网络优化的 GPU 加速库。对于 Jetson Xavier NX 而言,默认推荐版本为 CUDA 10.2 及 cuDNN 8.0[^2]。这些组件能够显著提升卷积运算效率从而加快检测速度。 #### TensorRT 使用 Alpha 封装库进行模型转换与优化 TensorRT 是专为高性能 AI 推理设计的 SDK,在嵌入式平台上尤其重要因为它可以有效降延迟同提高吞吐量。本案例采用 TensorRT-Alpha 封装库简化了从 PyTorch 或 ONNX 文件向 TensorRT engine 的迁移过程[^1]。 以下是具体的步骤说明: 1. **PyTorch/YOLOv8 导出至 ONNX** 需要先利用官方脚本或者自定义方法把预训练好的权重文件导成通用中间表示形式即 `.onnx` 格式的模型。 ```python import torch model = torch.hub.load('ultralytics/yolov5', 'yolov8n') # 替换为你实际使用的型号如 yolov8s/l/x/m... dummy_input = torch.randn(1, 3, 640, 640).to(device='cuda') input_names = ["input_0"] output_names = ["output_0"] torch.onnx.export( model, dummy_input, "yolov8n.onnx", verbose=False, opset_version=12, do_constant_folding=True, input_names=input_names, output_names=output_names, dynamic_axes=None ) ``` 2. **ONNX -> TRT Engine (借助 TensorRT Python API)** 进一步将上述生成的 `*.onnx` 输入给 TensorRT 编译器构建最终运行引擎实例化对象以便后续调用执行预测任务逻辑代码片段如下所示: ```python from polygraphy.backend.trt import CreateConfig, Profile, TrtRunner, engine_from_bytes, save_engine from polygraphy.comparator import DataLoader from polygraphy.logger import G_LOGGER import numpy as np def load_data(): data_loader = DataLoader() inp_data = np.random.rand(1, 3, 640, 640).astype(np.float32) data_loader.add_inputs({"input": inp_data}) return data_loader config = CreateConfig(profiles=[Profile().add("input", min=(1, 3, 320, 320), opt=(1, 3, 640, 640), max=(1, 3, 1920, 1920))]) with open("yolov8n.onnx", "rb") as f, TrtRunner(engine_from_bytes(f.read(), config=config)) as runner: outputs = runner.infer(feed_dict={"input": next(load_data())["input"]})['output'] print(outputs.shape) # 输出应匹配预期尺寸比如 [batch_size,num_boxes,(x,y,w,h)+conf+class_scores] ``` 以上展示了如何基于 Polygraphy 工具集快速验证导入后的张量形状正确与否等内容。 --- ### 性能优化技巧 当完成了基本框架移植之后还可以考虑以下几个方面进一步挖掘性能潜力: - 批次大小调整:适当增大 batch size 很可能带来更佳的整体表现但需权衡内存占用情况; - 数据精度控制:尝试 FP16/INT8量化方式减少浮点数位宽进而节省资源消耗; - 图像分辨率裁剪:依据应用场景选取合适的输入图像尺度既能保证识别效果又能缩短耗; ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值