基于上下文的 Listwise 重排模型(四):PRM

在这里插入图片描述



推荐系统重排神器PRM:基于Transformer的个性化重排序模型深度解析

论文PDF: Personalized Re-ranking for Recommendation

摘要

在推荐系统中,重排作为精排后的关键环节,直接影响用户体验和业务指标。阿里巴巴提出的个性化重排序模型(PRM, Personalized Re-ranking Model)通过Transformer架构建模列表内物品的交互关系,结合用户个性化偏好,实现精排结果的深度优化。本文从模型架构、损失函数、核心优势到落地实践全面解析PRM。

一、引言:重排为何成为推荐系统的“最后一公里”瓶颈?

在电商、内容推荐等场景中,精排模型(如双塔、Wide&Deep)通过单点打分生成初始列表,但存在两大痛点:

  1. 上下文缺失:单点打分忽略物品间依赖(如相似商品扎堆导致用户疲劳)。
  2. 个性化不足:无法动态适配用户实时偏好(如价格敏感型用户
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进一步有进一步的欢喜

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值