目录
推荐系统重排神器PRM:基于Transformer的个性化重排序模型深度解析
论文PDF: Personalized Re-ranking for Recommendation
摘要
在推荐系统中,重排作为精排后的关键环节,直接影响用户体验和业务指标。阿里巴巴提出的个性化重排序模型(PRM, Personalized Re-ranking Model)通过Transformer架构建模列表内物品的交互关系,结合用户个性化偏好,实现精排结果的深度优化。本文从模型架构、损失函数、核心优势到落地实践全面解析PRM。
一、引言:重排为何成为推荐系统的“最后一公里”瓶颈?
在电商、内容推荐等场景中,精排模型(如双塔、Wide&Deep)通过单点打分生成初始列表,但存在两大痛点:
- 上下文缺失:单点打分忽略物品间依赖(如相似商品扎堆导致用户疲劳)。
- 个性化不足:无法动态适配用户实时偏好(如价格敏感型用户