HBU-人工智能基础实验报告

本文介绍了机器学习中的基本概念,包括监督与无监督学习,分类与回归任务,聚类和降维方法,以及损失函数在模型优化中的作用。此外,还讨论了训练集、测试集和验证集的使用,以及过拟合和欠拟合的问题,最后提到了经验风险和期望风险的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作业1

1、监督学习、无监督学习

监督学习:从标注数据种学习预测模型

无监督学习:从无标记的训练数据中推断结论

2、分类、回归

分类:将事务分成特定的类型

回归:建立变量之间的函数关系

3、聚类、降维

聚类:常见的无监督算法,让样本聚成不同的类型

降维:降低数据的维度,主成分分析就含有降维技术

4、损失函数

损失函数:描述实际值与预测值差距的一种函数

5、训练集、测试集、验证集

训练集:用来训练模型以及确定参数

验证集:用于确定网络结构以及调整模型的超参数,来确定是否需要继续训练

测试集:用于检验模型的泛化能力,测试集用来形容模型能力的好坏

6、过拟合、欠拟合

过拟合:训练过度,只对训练集的效果好,对测试集的效果差

欠拟合:训练的不够,对训练集和测试集的效果都差

7、经验风险、期望风险

经验风险:经验风险来源于训练数据集,训练数据集的平均损失也称为经验风险。

期望风险:期望风险针对的是全体数据。也就是已有的数据,未有的数据都包括在内。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值