HEVC—SAO技术

来源

        SAO原始的思想来自于Samsung的提案JCTVC-A124。因为该提案太过复杂,因此没有被H265采用。但是基于该提案提出的SAO(JCTVC-BO77/C147/D122/E049)最后被采用了。在原始的提案中SAO分为LUMA SAO和CHROMA SAO(JCTVC-F056)。SAO的offset包含BO(Band offset)和EO(Edgeoffset)。

原理

        通过PSNR的计算公式可以看到,重构数据和原始YUV之间的差的平方和是决定PSNR的因素。SAO通过分析deblocking后的数据和原始YUV之间的关系来对deblock后的数据进行delta操作,使得尽量接近原始YUV,达到提高PSNR的目的。

        一个最基本的想法就是把deblock的重构数据和原始YUV中每一个相同位置的pixel做差值,把这个差值传给decoder,这样可以完全恢复原始YUV.但是这实际上是不现实的,如果每一个pixel都传输一个offset,这会导致码率会非常的高,达不到压缩的效果(如同DPCM)。H265在码率和PSNR之间做了一个tradeoff,以较小的码率增加来提高PSNR。

        此外,在图像中像素值剧烈变化的边界区,经过编码-解码重建之后通常会出现波纹状的失真现象,这种失真称作振铃效应。振铃效应产生的根本原因在于边界区高频分量在编码过程中丢失。SAO技术能够减少高频分量的损失,同时不降低编码的效率,从像素域入手对振铃区域进行补偿。

        下面就看H265是怎么做的。

        H265是基于CTB来做SAO。通过分析deblock重构pixel和原始输入YUV之间的关系将pixel分成了三种SAO模式: EO、BO以及不采用

        EO:边缘补偿,分为四种模式,分别为水平、垂直、135度、45度,每个CTU只能选择其中的一种模式。选择的过程采用RDO进行决策。在确定模式之后,又分为五种类型。

        这五种类型是根据当前的像素值与相邻的像素值之间的关系决定的。其中,类型0没有画出,它是代表平坦区域,即与相邻的像素值相等,那么就不进行EO操作。对于剩下的四种类型,每个类型分配一个offset。其中类型1与类型2的补偿值为正,3与4的补偿值为负。

        BO:带补偿。将图像的像素值范围划分为32个带(即32等分)。以平常经常使用的8bit的视频为例,像素值的范围就是0-255,那就是对0-255进行32等分,每一份的像素值为8k-8k+7(k∈[0,31])。计算每个带中原始样点与重建样点的平均值之差(即补偿值),选择连续的4个偏移最大的带进行补偿(切记是连续的4个带)。即如果像素值属于在这4个连续的带的范围,那么就对该像素进行补偿,补偿值为之前计算的每个带中原始样点与重建样点的平均值之差。为什么选择连续的4个带呢?一方面大部分的像素值应该集中在很少的几个带中,因此这能够覆盖大部分的像素值了,另外一方面,EO中也是用了4个偏移量,因此能够进行复用,节省了码率。

6/2025 MP4 出版 |视频: h264, 1280x720 |音频:AAC,44.1 KHz,2 Ch 语言:英语 |持续时间:12h 3m |大小: 4.5 GB 通过实际 NLP 项目学习文本预处理、矢量化、神经网络、CNN、RNN 和深度学习 学习内容 学习核心 NLP 任务,如词汇切分、词干提取、词形还原、POS 标记和实体识别,以实现有效的文本预处理。 使用 One-Hot、TF-IDF、BOW、N-grams 和 Word2Vec 将文本转换为向量,用于 ML 和 DL 模型。 了解并实施神经网络,包括感知器、ANN 和数学反向传播。 掌握深度学习概念,如激活函数、损失函数和优化技术,如 SGD 和 Adam 使用 CNN 和 RNN 构建 NLP 和计算机视觉模型,以及真实数据集和端到端工作流程 岗位要求 基本的 Python 编程知识——包括变量、函数和循环,以及 NLP 和 DL 实现 熟悉高中数学——尤其是线性代数、概率和函数,用于理解神经网络和反向传播。 对 AI、ML 或数据科学感兴趣 – 不需要 NLP 或深度学习方面的经验;概念是从头开始教授的 描述 本课程专为渴望深入了解自然语言处理 (NLP) 和深度学习的激动人心的世界的人而设计,这是人工智能行业中增长最快和需求最旺盛的两个领域。无论您是学生、希望提升技能的在职专业人士,还是有抱负的数据科学家,本课程都能为您提供必要的工具和知识,以了解机器如何阅读、解释和学习人类语言。我们从 NLP 的基础开始,从头开始使用文本预处理技术,例如分词化、词干提取、词形还原、停用词删除、POS 标记和命名实体识别。这些技术对于准备非结构化文本数据至关重要,并用于聊天机器人、翻译器和推荐引擎等实际 AI 应用程序。接下来,您将学习如何使用 Bag of Words、TF-IDF、One-Hot E
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sheldonma

感谢大佬赏饭

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值