TensorFlow中seq2seq库函数

本文详细介绍了TensorFlow中seq2seq模型的两个关键库函数:basic_rnn_seq2seq和embedding_attention_seq2seq,包括它们的输入输出参数及应用场景。此外,还讨论了sequence-to-sequence模型实现中的sample softmax策略和bucketing策略,以及在 Github 源代码中的seq2seq.py、data_utils.py和seq2seq_model.py文件中的关键函数解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、seq2seq.py的两个重要的库函数

1) outputs, states = basic_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,dtype=dtypes.float32,scope=None)

输入参数 :

encoder_inputs: 它是一个二维tensor构成的列表对象,其中每一个二维tensor代表某一时刻的输入,其尺寸为[batch_size x input_size],这里的batch_size具体指某一时刻输入的单词个数,input_size指encoder的长度;

decoder_inputs:它是一个二维tensor构成的列表对象,其中每一个二维tensor代表某一时刻的输入,其尺寸为[batch_size x output_size],这里的 batch_size具体指某一时刻输入的单词个数,output_size指decoder的长度;

cell: 它是一个rnn_cell.RNNCell或者multi-layer-RNNCell对象,其中定义了cell函数和hidden units的个数;

dtype: 初始化RNN cell状态的类型,默认为tf.float32;

scope:variablescope for the created subgraph,默认为“basic_rnn_seq2seq”;

输出参数 :

outputs: 它是一个二维tensor构成的列表对象,其中每一个二维tensor代表某一时刻输出,其尺寸为[batch_size x output_size],这里的 batch_size具体指某一时刻输入的单词个数,output_size指decoder的长度;

state: 它是一个二维tensor,表示每一个decoder cell在最后的time-step的状态,其尺寸为[batch_size x cell.state_size],这里的cell.state_size可以表示一个或者多个子cell的状态,视输入参数cell而定;

2) outputs, states = embedding_attention_seq2seq(encoder_inputs, decoder_inputs, …)

输入参数 :

encoder_inputs: 与上面的基本函数,它是一个一维tensor构成的列表对象,其中每一个一维tensor的尺寸为[batch_size],代表某一时刻的输入;

decoder_inputs: 与encoder_inputs的解释类似;

cell: 它是一个rnn_cell.RNNCell或者multi-layer-RNNCell对象,其中定义了cell函数和hidden u

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值