决策树

说在前头:本文的语句大部分出于自己理解的白话文,可能并不标准,但力求简单易懂。

1.决策树简要介绍

1.1决策树是什么

决策树是基于树结构的决策模型,对一个问题形如“这是好瓜吗?”进行决策的时候,通过一系列的“子决策”(通过各个属性特征)来进行分支判断,决策过程的最终结果对应了判定结果。

决策树的叶子节点所代表的类别即是当前测试样本的预测类别。

决策树的学习目的:产生一颗泛化能力强的决策树。
其基本流程遵循简单且直观的“分而治之”策略。

1.2 决策树算法流程

1.所有样本为同一类?生成叶节点:提取特征集A
2.特征集A为空 or 样本在A上取值相同?选择样本中占比最多的类为叶节点:从A中选择最优划分属性特征a生成节点(C4.5/ID3/CART)
3.特征值是否遍历结束?决策树生成完成:继续以判别准则进行遍历生成节点,直到决策树建立完毕

2.决策树划分的三种准则

参照1.2的算法流程,关键核心在于“选择最优划分属性”,也就是说节点的条件如何取舍。我们希望一个节点下的样本尽可能属于一个类别(这样才算分类准确啊),即节点的“纯度”最高。

2.1ID3信息增益(Gain)

ID3

2.2 C4.5信息增益率(Gain_ratio)

如上所述,信息增益对属性可取值数目多的有偏好(一个属性里类别多的,编号例子),因此引入信息增益率。但信息增益率对可取值数目少的有偏好,所以C4.5采用启发式:先选择信息增益高于平均水平的属性,再从中选择增益率最高的。

在这里插入图片描述

2.3 基尼指数 CART决策树使用

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值