np.newaxis

本文介绍了numpy库中np.newaxis的使用,该特性用于在一维或二维数组中插入新的维度,以方便进行多维数据操作。通过实例展示了在一维和二维数组上的应用及其输出效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

np.newaxis

np.newaxis的作用是:在当前位置,插入一个新维度。

一维数组

import numpy as np

a = np.arange(5) # a.shape=(5,)
b = a[np.newaxis, :] # b.shape=(1,5)
c = a[:,np.newaxis] # c.shape=(5,1)
d = a[:,np.newaxis,np.newaxis] # d.shape=(5,1,1)
e = a[np.newaxis, np.newaxis, :] # e.shape=(1,1,5)
print('a = ',a)
print('b = ',b)
print('c = ',c)
print('d = ',d)
print('e = ',e)

输出:

a =  [0 1 2 3 4]
b =  [[0 1 2 3 4]]
c =  [[0][1][2][3][4]]
d =  [[[0]][[1]][[2]][[3]][[4]]]
e =  [[[0 1 2 3 4]]]

二维数组

import numpy as np

a = np.arange(6).reshape(2, 3)  # a.shape=(2,3)
b = a[:, np.newaxis]  # b.shape=(2,1,3)
c = a[:, np.newaxis, :]  # c.shape=(2,1,3)
d = a[..., np.newaxis]  # d.shape=(2,3,1)
e = a[np.newaxis, ...]  # e.shape=(1,2,3)
print('a = ', a)
print('b = ', b)
print('c = ', c)
print('d = ', d)
print('e = ', e)

输出:

a =  [[0 1 2]
 	  [3 4 5]]
b =  [[[0 1 2]]
      [[3 4 5]]]
c =  [[[0 1 2]]
      [[3 4 5]]]
d =  [[[0]
       [1]
       [2]]
      [[3]
       [4]
       [5]]]
e =  [[[0 1 2]
       [3 4 5]]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值