问题来源
有一活动,临摹油画,然后拍照上传。判断与原画的相似度,相似度越高,分数就越高。
作为技术男,看到这个,第一反应当然是思考怎么实现这一功能啦。由于玩过opencv,所以第一反应是利用opencv的sift获取特征点集合,然后比较特征点集合,但是如何比较特征点集合一致就成了问题,一致找不到比较好的方法,后来在网上查了一下,发现比较图案的方法还不少。
了解一下,发现最简单易实现的就是pHash算法了,所以决定写一下,作为图像相似度比较的入门学习。
算法思路
基本思路就是灰度化->压缩至同一尺寸(32*32)->离散变换->计算相似hash(指纹)->计算汉明距,具体逻辑如下:
获取图形矩阵(每个rgb图片的像素由三个维度指明:横坐标、纵坐标、rgb值,因此该矩阵实际是三维矩阵)
压缩至统一尺寸(减少计算量、忽略尺度变换带来的影响,插值方法使用邻域再取样方法)
计算灰度均值
遍历矩阵,大于等于灰度均值为1,小于灰度均值为0
转为对应字符串,获得hash值
计算汉明距
问题与思考
问:为什么要转灰度图?
忽略轻微色差带来的影响,也便于计算指纹和降低计算量。
问:这里的图形矩阵是什么?
对于rgb图像,每个像素由三个维度指明:横坐标、纵坐标、色值(有三个元素,分别表示rgb值),因此矩阵实际是三维矩阵,如img[0][0][]=[0xFF, 0xFF, 0xFF]表示的就是第一行第一个像素的rgb值(这里是白色),当然你也可以把rgb值直接组合成一个3字节整型数,这样他就是一个二维矩阵了。同时,灰度矩阵则是一张图的每个像素点的灰度值,对应的是一个二