离线环境配置 0.10.1 fairseq

本文档详细记录了如何在离线环境下配置fairseq 0.10.1的过程,包括创建虚拟环境、处理cuda和cudnn的配置、安装torch以及解决fairseq安装和运行时遇到的各种错误。强调了gcc版本要求、Cython的安装以及cudatoolkit的暴力解压方法。最后提醒,尽管在虚拟环境中安装,fairseq仍可能影响到其他环境的纯净性,因此并不推荐这样做。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.虚拟环境

主环境的0.9版fairseq还需要使用,并且安装0.10.1的fairseq还需要使用主环境的一些依赖,于是创建虚拟环境安装,并且是复制主环境的虚拟环境。(有隐患)

conda create -n new-env --clone old-env

进入虚拟环境:

conda activate new-env

报错:

CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'.

解决:

source activate

二.cuda和cudnn配置

1.cuda 

export LD_LIBRARY_PATH="XXX/cuda-10.2/lib64:$LD_LIBRARY_PATH"
export CUDA_HOME="XXX/cuda-10.2/"
export PATH="XXX/cuda-10.2/bin:$PATH"

2.cudnn

下载地址:

https://developer.nvidia.com/rdp/cudnn-archive

选项:

### BevFormer 环境配置中的 PyTorch 版本依赖 为了成功配置 BevFormer 的运行环境,需要特别关注其对 PyTorch 和 CUDA 版本的要求。以下是详细的说明: #### 1. PyTorch 版本的选择 BevFormer 是一种基于 PyTorch 构建的模型框架,因此选择合适的 PyTorch 版本至关重要。通常情况下,推荐使用较新的稳定版 PyTorch 来获得更好的性能支持以及兼容性保障。 - 如果当前系统的 CUDA 已经安装为 `cu111`(即 CUDA 11.1),则可以选择如下命令来安装 PyTorch[^1]: ```bash pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html ``` - 若系统中已存在更高版本的 CUDA(例如 `cu113` 或者更新版本),那么可以考虑安装更适配的 PyTorch 版本,比如通过以下方式完成安装[^2]: ```bash pip install torch==1.10.0+cu113 torchvision==0.11.0+cu113 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html ``` 需要注意的是,PyTorch 不同版本之间可能存在 API 变化或者功能差异,这可能影响到 BevFormer 中某些特定模块的功能实现效果。 #### 2. Cuda Toolkit 配置注意事项 除了正确设置 PyTorch 外部库外,还需要确认本地 NVIDIA GPU Driver 能够良好支持所选 CUDA Toolkit 版本。如果发现驱动程序与目标 CUDA 版本不一致,则需调整至相匹配的状态后再继续操作[^3]。 #### 3. 其他必要组件安装 对于完整的 BevFormer 运行环境而言,仅具备适当版本的 PyTorch 并不足以满足需求。还需额外引入其他辅助工具集,如 Detectron2 等用于处理图像分割任务的核心部分: ```bash python -m pip install 'git+https://github.com/facebookresearch/detectron2.git' ``` 以上步骤完成后即可构建起适合执行 BevFormer 实验的基础平台架构。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值