
Python量化金融实战
文章平均质量分 79
本书《Python量化金融实战:从基础到前沿》旨在为读者构建一条从零基础到前沿技术的完整学习路径,既覆盖量化金融的核心方法论,也深入探索机器学习、区块链、量子计算等新兴领域,帮助读者在理论与实战中掌握驾驭现代金融市场的关键技能。
言析数智
为公安、烟草、交警、教育教学等十多个领域提供深度数据洞察与解决方案,具有从0-1项目孵化成功经验。
自研工具:数据调研工具、AI定制算法推理工具等
技能认证:PMP认证、信息系统项目管理师、数据工程专家认证、CFA level I(passed)
工作荣誉:
2024年度-数据之星奖
2024年-数据应用模型创新大赛-单位一等奖、作品一等奖、个人一等奖
2024年-科技先进工作者、数据工程专家认证
2023年-信息系统项目管理师、PMP认证、省级评标专家库、参与4篇专利、杭E人才
2022年-攻坚克难奖
2021年-研发之星奖
2020年-优秀员工
2017年-校优秀应届毕业生
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Python量化金融实战】-第2章:金融市场数据获取与处理:2.2 数据清洗与预处理:缺失值处理、异常值检测、数据对齐(更新中)
数据清洗与预处理是量化金融分析的基石。金融市场数据往往存在缺失值、异常值以及时间序列不对齐等问题,直接影响模型的有效性。本章通过实战案例展示如何利用Python工具(如Pandas)解决这些问题。原创 2025-02-24 23:57:28 · 107 阅读 · 0 评论 -
【Python量化金融实战】-第1章:Python量化金融概述:1.4 开发环境搭建:Jupyter Notebook、VS Code、PyCharm
本小节学习建议:通过灵活选择开发环境,开发者可以高效完成从数据清洗、策略回测到结果展示的全流程工作。建议初学者从Jupyter起步,逐步过渡到VS Code或PyCharm进行系统化开发。原创 2025-02-23 23:56:30 · 495 阅读 · 0 评论 -
【Python量化金融实战】-第1章:Python量化金融概述:1.3 常用工具库:NumPy、Pandas、Matplotlib、Scikit-learn、TA-Lib
本小节介绍了几个常用的Python工具库:NumPy、Pandas、Matplotlib、Scikit-learn和TA-Lib。这些库在数据科学、量化交易和机器学习领域具有广泛的应用。NumPy提供了高效的数值计算能力,Pandas简化了数据处理和分析工作,Matplotlib使数据可视化变得简单直观,Scikit-learn为机器学习建模提供了丰富的算法和工具,而TA-Lib则专注于金融市场的技术分析。原创 2025-02-23 19:40:44 · 475 阅读 · 0 评论 -
【Python量化金融实战】-第1章:Python量化金融概述:1.2 Python在量化金融中的优势与生态
本小节学习建议:Python在量化金融领域的统治地位不仅体现在当前的技术栈中,更在于其持续进化的能力。随着AI、区块链等新技术的融合,Python开发者将始终处于金融创新的最前沿。建议学习者从构建完整的策略生产线开始,逐步深入高频交易、风险管理等专业领域。原创 2025-02-23 15:16:56 · 547 阅读 · 0 评论 -
【Python量化金融实战】-第1章:Python量化金融概述:1.1量化金融的定义与发展历程
本小节学习建议:掌握Python编程、统计学(时间序列分析)、金融学基础(资产定价理论)三者结合,是进入量化领域的核心路径。原创 2025-02-23 12:53:11 · 618 阅读 · 0 评论