深度学习---one-hot向量

在深度学习中,为了将文本数据转化为模型输入,常用的方法是使用one-hot向量。这种表示方式通过创建一个全0的向量,并在对应词汇索引的位置设置为1,来表示每个独特的字符。对于含有N个不同字符的词典,每个字符会被分配一个0到N-1的索引,进而转换成长度为N的one-hot向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

one-hot向量
为了将词表示为向量输入到神经网络,一个简单的办法是使用one-hot向量。假设词典中不同字符的数量为N,每个字符已经同一个从0到N-1的连续整数值索引一一对应。如果一个字符的索引是整数i,那么就创建一个全0的长为N的向量,并将其位置为i的元素设成1.该向量就是对原字符的one-hot向量。

label = torch.tensor([2,3,4,1]).view(-1,1)
one_hot = torch.zeros(4, 10).scatter_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值