3D Object Detection——Segmentation-based methods

本文介绍了两种基于点云的3D对象检测方法:PointRCNN和PointPainting。PointRCNN不依赖投影或体素化,通过两阶段策略直接处理点云,实现高效高质量的3D提案生成。在Stage-1中,它对点云进行前景点和背景点分割,然后在Stage-2中进行提案优化。PointPainting则提出了序列融合策略,通过融合不同信息来提升3D检测性能。这两种方法都在Kitti数据集上进行了实验验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PointRCNN

PointPainting

 

 

代表1:PointRCNN

不投影,不体素化,直接处理点云。

stage-1将整个场景的点云分割为前景点和背景点,以自下而上的方式直接从点云生成少量高质量的3D提案,比以前的方案生成方法具有更高的召回率;

Stage-2阶段将语义特征和局部空间特征结合起来,在规范坐标中对提案进行了优化。

实验数据:Kitti数据集的3D检测数据。

a. Bottom-up 3D Proposal Generation

  • backbone提取每个点云特征:backbone可以是带有msg(multi-scale grouping)的pointnet++,也可以是VoxelNet;
  • 前景点分割:点云二分类,用focal loss解决前景点与背景点的分布不均衡问题;
  • 基于bin的三维边界框生成:X,Z轴平行于地面,沿着X和Z轴将每个前景点的周围区域分割成一系列离散的box,判断中心点是否在bin内。作者将回归问题转化为分类问题,使用基于交叉熵损失的bin分类,而不是使用平滑L1损失的直接回归,可以获得更精确和稳健的中心定位。

b. Canonical 3D Box Refinement

  • 利用上一步得到的proposal,稍微扩大一定的大小,获得更大的context信息;
  • 依据3D框将提取框内的点云信息,具体的,将相应的点的原始特征和segmentation task提取的特征进行融合(concat);
  • 正交变换:融合前将将每个方案的集合点转换为规范坐标,即转到每个box的局部坐标系中,将局部坐标与语义特征融合;
  • 编码特征,进行分类和bin的回归。这里的bin和上一阶段一样,依然是分类问题。

论文地址:https://arxiv.org/abs/1812.04244

代码地址:https://github.com/sshaoshuai/PointRCNN

 

代表2:PointPainting

PointPainting: Sequential Fusion for 3D Object Detection

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值