PointRCNN
PointPainting
代表1:PointRCNN
不投影,不体素化,直接处理点云。
stage-1将整个场景的点云分割为前景点和背景点,以自下而上的方式直接从点云生成少量高质量的3D提案,比以前的方案生成方法具有更高的召回率;
Stage-2阶段将语义特征和局部空间特征结合起来,在规范坐标中对提案进行了优化。
实验数据:Kitti数据集的3D检测数据。
a. Bottom-up 3D Proposal Generation
- backbone提取每个点云特征:backbone可以是带有msg(multi-scale grouping)的pointnet++,也可以是VoxelNet;
- 前景点分割:点云二分类,用focal loss解决前景点与背景点的分布不均衡问题;
- 基于bin的三维边界框生成:X,Z轴平行于地面,沿着X和Z轴将每个前景点的周围区域分割成一系列离散的box,判断中心点是否在bin内。作者将回归问题转化为分类问题,使用基于交叉熵损失的bin分类,而不是使用平滑L1损失的直接回归,可以获得更精确和稳健的中心定位。
b. Canonical 3D Box Refinement
- 利用上一步得到的proposal,稍微扩大一定的大小,获得更大的context信息;
- 依据3D框将提取框内的点云信息,具体的,将相应的点的原始特征和segmentation task提取的特征进行融合(concat);
- 正交变换:融合前将将每个方案的集合点转换为规范坐标,即转到每个box的局部坐标系中,将局部坐标与语义特征融合;
- 编码特征,进行分类和bin的回归。这里的bin和上一阶段一样,依然是分类问题。
论文地址:https://arxiv.org/abs/1812.04244
代码地址:https://github.com/sshaoshuai/PointRCNN
代表2:PointPainting
PointPainting: Sequential Fusion for 3D Object Detection