
yolo视觉识别
文章平均质量分 78
分享本人yolo实践开发过程中遇到的一些问题,本人非该行业人员,相关经验仅供参考,如有错误欢迎各位指出,以便我纠正学习
一只长不大的小菜鸟
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLO模型实战:4mm产品检测3秒搞定!分割法实现490个目标零漏检
摘要:针对4×4mm微小产品的盘装检测难题,采用YOLO系列模型进行训练测试时遇到识别率不足的问题,尝试了提升解析度(2000万像素CCD相机)、多尺寸训练(640-1920px)、增加标注数据(100张图/1000+标注点)和更换模型(YOLOv8到v11)均未解决。最终通过图像分割处理方案实现突破:将产品盘图像对半切分后分别识别再合并结果,配合1280px训练尺寸,使490个目标的识别准确率达到100%。测试发现模糊图像的特征简化反而提升识别效果,3060显卡下识别耗时约3秒。该方案通过L型定位规避分割原创 2025-06-03 10:55:43 · 953 阅读 · 0 评论 -
使用yolo模型进行目标检测,包含训练步骤和测试代码
训练过程截图,我这里是使用CPU训练,i7 11700型号的, 8核心CPU测试下来5秒一张图,只要识别指定目标的,我放了18张图,共计包含150个标注信息,训练出来的结果已经很好了。训练好的模型放在my_train\自己定义的输出名称\weights中,bast.pt代表最佳模型,last.pt代表最后训练的模型。val文件夹中,需要放置几个错误的产品,放图片和txt文件,txt设置为空就行,图片名称和txt文件名要保持一致,用于验证的。*这两个是一一对应的,也就是说图片名称和标注名称是一致的。原创 2025-03-24 11:36:51 · 2201 阅读 · 0 评论 -
Python+CV2二维码识别实战:针对大图小码的预处理与检测
一个可行的方案:先识别产品区域,再进一步无损裁剪二维码可能性的区域,裁剪的二维码识别精度低,还需要进一步放大后识别,之前使用了ZXing、Pyzbar 、cv2等最基础的识别库,识别能力一般般。3、I7 9700系列处理器,主要是加快识别速度,感觉还行,差距不大,识别瞬间会调用所有核心,几乎一秒钟后就搞定了。最后翻了好多资料,最终识别二维码采用的是微信开源的算法模型,能识别模糊的、倾斜角度的,识别能力是很靠谱。需求:产品中有二维码,但是二维码很小,需要进行整盘识别二维码并记录,难度大,精度低。原创 2025-03-26 13:46:08 · 292 阅读 · 0 评论