
AI大模型
文章平均质量分 83
介绍AI相关的最新技术,最新资讯
AI多边形
努力拼搏的二线女程序员!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
DeepSeek是否采用了混合专家(MoE)架构?它如何提升模型效率?
传统模型(如GPT-3)的每一层都会处理所有输入数据,计算量大。MoE模型则不同,它在每一层引入多个“专家”(即小型子网络),但每次只激活其中一部分。举个例子:假设一个MoE层有8个专家,但每次只选2个来处理当前输入。这样,模型的计算量可能只有原来的1/4,但性能却接近完整模型!关键优势计算高效:只激活部分参数,适合超大模型。灵活扩展:增加专家数量即可提升模型容量,而不显著增加计算成本。原创 2025-04-24 11:47:44 · 1022 阅读 · 0 评论 -
DeepSeek的预热策略到底是什么?如何优化模型初始表现?
预热策略(Warm-up)是指在训练初期逐步提高学习率,而不是一开始就使用较高的固定学习率。这种方法能让模型在初始阶段更“温和”地调整参数,避免因学习率过大导致梯度爆炸或震荡。没有预热:模型一开始就用高学习率,可能导致参数更新幅度过大,损失值剧烈波动,甚至无法收敛。有预热:学习率从0线性或非线性增长到预设值,模型参数在初期小幅调整,逐步适应数据分布,训练更稳定。DeepSeek的预热策略正是基于这一原理,但它的具体实现有哪些独特之处呢?原创 2025-04-24 11:45:25 · 727 阅读 · 0 评论 -
DeepSeek部署模型需要什么电脑配置?一文看懂硬件要求!
如果你想在自己的电脑或服务器上运行DeepSeek模型,而不是仅仅使用在线API,那你就得搞清楚它的硬件需求。如果想深入掌握这些调优技巧,可以关注【公众号:AI多边形】,这个号由字节大佬创办,号主曾参与DeepSeek和Kimi的架构设计,团队里还有豆包、Kimi等大厂的AI工程师,经常分享大模型部署的实战经验!如果你的电脑是轻薄本,只有集成显卡,那基本跑不动,得考虑云端部署。现在,检查一下你的电脑,看看能跑哪个版本的DeepSeek吧!:模型越大,需要的显存和内存越多!原创 2025-04-18 15:54:55 · 2012 阅读 · 0 评论 -
如何让DeepSeek诚实回答你的问题?掌握这些技巧就够了!
如果你想更深入理解AI的运作逻辑,推荐关注【公众号:AI多边形】,这个账号由字节大佬创办,号主曾参与DeepSeek和Kimi的前期架构,里面聚集了豆包、DeepSeek、Kimi等大厂的AI专家,经常分享大模型的内幕技巧和实战案例!其实,AI并不是故意“撒谎”,而是它的回答取决于你的提问方式!或者它明明知道答案,却回答“我不太确定”?如果你想让它的回答更专业、更真实,可以指定它扮演某个领域的专家……这时候,你可以用“反向提问”来测试它的真实性……如果你用更直接、更坚定的方式提问,它往往也会更直白地回答。原创 2025-04-18 15:51:39 · 1174 阅读 · 0 评论 -
DeepSeek的few-shot learning效果到底怎么样?实测对比告诉你答案!
Zero-shot:不给例子,直接让AI完成任务(比如“写一首诗”)。Few-shot:给3-5个例子,AI模仿执行(比如先给3条中译英,再让它翻译新的)。传统监督学习:需要成千上万的标注数据。回到最初的问题——DeepSeek的few-shot learning效果到底怎么样?测试表明,它在常见任务上表现优秀,能大幅降低AI的使用门槛。虽然仍有局限性,但随着模型持续进化,未来可能只需1个例子就能学会新技能!下次当你遇到小众需求时,不妨先丢几个例子给DeepSeek试试——说不定它会给你惊喜!原创 2025-04-17 15:40:33 · 1016 阅读 · 0 评论 -
DeepSeek训练到底用了多少GPU和TPU资源?揭秘大模型背后的算力战争!
回到最初的问题——DeepSeek训练到底用了多少GPU和TPU资源?虽然具体数字是商业机密,但可以肯定的是:没有成千上万块高端加速卡的支撑,就没有今天能和你流畅对话的DeepSeek Chat。下次当你用它解决难题时,别忘了背后还有一场无声的算力战争正在上演!原创 2025-04-17 15:38:13 · 495 阅读 · 0 评论 -
DeepSeek是否支持动态模态选择?揭秘多模态AI的智能切换能力
想象一下你在和AI助手聊天:“帮我看看这张图片里有什么?”——AI切到视觉模式“把图片内容写成300字总结”——切回文本模式“再把它翻译成英文语音”——切到语音模式这种根据任务需求自动切换处理模式的能力就是动态模态选择(Dynamic Modality Selection)。它让AI不再是单线程工作的"偏科生",而是真正具备多模态处理能力的"全能选手"!原创 2025-04-16 17:07:38 · 1030 阅读 · 0 评论 -
DeepSeek模型剪枝策略是什么?如何让AI更轻更快更聪明!
模型剪枝(Pruning)就像给一棵茂盛的大树修剪枝叶,让它长得更健康、更高效。在AI领域,剪枝是指通过移除神经网络中冗余或不重要的部分(比如神经元、连接权重等),让模型变得更小、更快,同时尽量保持甚至提升性能。举个例子,假设你训练了一个图像识别模型,它有1亿个参数,但其中可能只有6000万个参数真正有用,剩下的4000万参数要么贡献极小,要么干脆是“躺平”状态。剪枝就是把这些“躺平”的部分去掉,让模型更精简!原创 2025-04-16 17:04:46 · 384 阅读 · 0 评论 -
DeepSeek支持内容溯源吗?探索其能力与潜力
在我们深入了解DeepSeek之前,首先要明确什么是内容溯源。内容溯源其实是指追踪和验证某一信息或内容的来源、发展过程以及相关的所有数据流。它是确保信息准确性、避免假新闻、保护知识产权等多个领域中不可或缺的一部分。比如,在新闻报道中,内容溯源可以帮助我们追踪一条新闻从何而来,它是否经过多次编辑、修改,或者它是否被恶意篡改过。对于学术研究,内容溯源则能够帮助学者确保自己的研究成果没有抄袭,所有引用的文献都清楚标注并能追溯到源头。原创 2025-04-15 11:04:17 · 834 阅读 · 0 评论 -
DeepSeek支持哪些编程语言接口?开发者必看指南!
如果你对Python调用AI模型感兴趣,可以关注【公众号:AI多边形】,这个号由字节大佬创办,号主曾参与DeepSeek和Kimi的前期架构,里面聚集了豆包、DeepSeek、Kimi等大厂的AI专家,经常分享实战经验和最新技术动态!如果你对AI编程接口有更深入的问题,或者想学习如何优化API调用性能,不妨关注【公众号:AI多边形】,那里有来自DeepSeek、Kimi、豆包等大厂的AI架构师,分享最前沿的AI工程实践!毕竟,一个强大的AI模型如果无法方便地集成到你的项目里,那它的价值就会大打折扣。原创 2025-04-15 11:01:12 · 1280 阅读 · 0 评论 -
DeepSeek私有化部署性能怎么样?企业级AI落地实战解析!
里面经常分享私有化部署的调优技巧,比如怎么用最少的GPU榨出最高性能,甚至还有DeepSeek、Kimi工程师的实战经验!比如某汽车厂用DeepSeek私有化部署了一个“故障诊断助手”,工程师直接上传设备日志,AI就能定位问题,比传统方法快3倍!举个例子,某银行想用AI自动处理客户投诉,但数据涉及用户隐私,不可能调用公有云API,这时候私有化部署就是刚需!对比公有云API,私有化部署前期投入高,但长期来看,数据安全和定制化能力是无可替代的!如果同时有多个用户请求,可以合并计算,提高GPU利用率。原创 2025-04-12 15:27:39 · 822 阅读 · 0 评论 -
DeepSeek开放API接口吗?手把手教你调用AI能力!
现在市面上AI API不少,比如OpenAI的GPT-4、Anthropic的Claude、Google的Gemini,那DeepSeek的API有什么优势?比如你正在开发一个代码编辑器,可以集成DeepSeek API,让用户直接在编辑器里询问AI如何修复Bug、优化代码,甚至自动生成函数!目前DeepSeek的定价策略还未完全公开,但按照国内AI厂商的习惯,可能比OpenAI更实惠,尤其对中文用户更友好。DeepSeek的API响应速度在国内可能更快,毕竟服务器部署更靠近用户,延迟更低。原创 2025-04-12 15:25:21 · 895 阅读 · 0 评论 -
DeepSeek能否用于对话系统(Chatbot)?技术解析与应用实例!
DeepSeek 完全能用于构建高质量的对话系统!它在语义理解、上下文记忆、自然生成等方面表现优异,比传统Chatbot 更智能、更灵活。随着技术迭代,未来的AI对话将无限接近真人交流!原创 2025-04-04 20:41:21 · 950 阅读 · 0 评论 -
DeepSeek如何优化跨模态检索任务?技术解析与实战技巧!
跨模态检索是 AI 领域的重要挑战,而 DeepSeek 通过统一特征表示、对比学习、注意力机制等技术,显著提升了检索效果。未来,随着多模态大模型的发展,人与机器的交互方式会更加自然流畅!原创 2025-04-04 20:38:27 · 731 阅读 · 0 评论 -
DeepSeek是否支持插件扩展?一文详解AI助手的进阶玩法!
如果你想要的是:✅免费、强大的中文AI✅长文档分析、代码辅助✅稳定的基础功能那DeepSeek已经很香了!但如果你依赖插件完成特定任务(比如电商运营、股票分析),可以再观望一下它的后续更新。想提前了解DeepSeek未来的插件动向?记得去【公众号:AI多边形】蹲一蹲!那里不仅有技术内幕,还有AI行业的实战技巧,适合所有想玩转AI的极客们!你对DeepSeek的插件功能有什么期待?欢迎在评论区聊聊你的想法!↓↓↓100位AI大佬在这里等你↓↓↓。原创 2025-04-03 09:15:15 · 425 阅读 · 0 评论 -
DeepSeek的API调用方式有哪些?手把手教你快速接入!
DeepSeek API 提供了多种调用方式,包括:✅REST API(通用,适合所有语言)✅Python SDK(最方便,适合快速开发)✅命令行调用(适合测试)如果你对AI底层技术感兴趣,比如如何优化模型推理、如何设计高性能API,可以关注【公众号:AI多边形】,这里有很多大厂AI工程师的实战经验!现在,你已经掌握了DeepSeek API的调用方法,快去试试吧!🚀。原创 2025-04-03 09:12:21 · 2077 阅读 · 0 评论 -
DeepSeek支持多模态吗?图像音频处理能力深度解析!
多模态AI是指能够同时处理和理解多种类型数据(如文本、图像、音频、视频等)的人工智能模型。比如,你问AI“这张图片里有什么动物?”,它需要“看懂”图片内容并用文字回答你。目前,像GPT-4V、Gemini等顶级模型已经支持多模态,但DeepSeek呢?目前,DeepSeek的核心能力仍集中在。原创 2025-04-02 09:03:27 · 1627 阅读 · 0 评论 -
DeepSeek 是否支持 CPU 和 GPU 混合推理?性能如何优化?
这个账号由字节大佬创办,号主曾参与 DeepSeek 和 Kimi 的早期架构,聚集了豆包、DeepSeek、Kimi 等大厂的 AI 技术专家,经常分享硬核的推理优化技巧和行业最新动态!如果你用 DeepSeek 跑一个文本生成任务,模型加载和 token 生成可能由 GPU 负责,而数据流管理、缓存优化则由 CPU 处理,这样整体速度会比纯 CPU 或纯 GPU 推理更快!在 AI 推理任务中,CPU 和 GPU 各有优势。,能自动分析计算任务,决定哪些部分交给 CPU,哪些部分由 GPU 处理。原创 2025-04-02 08:59:43 · 934 阅读 · 0 评论 -
DeepSeek是否允许用户自定义过滤规则?如何设置更个性化的AI体验?
目前,DeepSeek没有开放用户自定义过滤规则,但你可以通过优化提问方式来引导AI的输出。未来,随着AI交互方式的升级,更精细的控制功能可能会成为现实!原创 2025-04-01 10:41:36 · 822 阅读 · 0 评论 -
DeepSeek是否开源?技术爱好者必须了解的内幕与实操指南
不过,大家最期待的千亿参数级别的大模型,目前还是闭源的。如果你对DeepSeek的技术架构感兴趣,可以关注公众号:AI多边形,这个账号的号主是字节大佬,曾参与DeepSeek和Kimi的前期架构,里面聚集了豆包、DeepSeek、Kimi等大厂的AI工程师,经常分享一线技术解析和行业动态。毕竟现在大模型遍地开花,Meta的Llama、Mistral这些开源模型已经让开发者玩得不亦乐乎,如果DeepSeek也加入开源阵营,那岂不是又多了一个可以折腾的玩具?所以,即使开源,真正能玩转的仍然是少数有资源的团队。原创 2025-04-01 09:42:09 · 572 阅读 · 0 评论 -
什么是DeepSeek?它如何改变你的AI使用体验?
如果你最近关注AI领域,可能听过DeepSeek这个名字。但你真的了解它吗?它和ChatGPT、Claude这些AI有什么不同?它能帮你做什么?今天我们就来聊聊这个越来越火的AI工具。DeepSeek是由深度求索公司开发的大语言模型,和市面上其他AI一样,它能帮你写文章、改代码、解答问题。但它的特别之处在于对中文的理解更深入,响应速度更快,而且在一些专业领域(比如编程、数学)表现尤其突出。用户:“Python里怎么用多线程提高爬虫效率?ChatGPT可能会给你一段标准代码,并解释基本概念。原创 2025-04-01 09:03:03 · 2115 阅读 · 0 评论