基于梯度下降算法的曲线拟合

本文介绍了如何使用梯度下降法进行曲线拟合,包括一次、二次和三角函数的拟合。讨论了梯度下降法的迭代规则、学习率的影响以及局部最优问题。还提到了神经网络作为通用的拟合方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

梯度下降法

        在求解函数最小值时,首先初始化一个变量值,然后不断迭代该变量值,直到函数在该变量值的地方梯度接近于0或迭代次数达到我们设定的阈值即终止迭代,此时就找到了一个函数极值点。

        因为函数在梯度反方向上下降最快,所以利用梯度来迭代变量。

       迭代规则:x = x – lr * grad(x); 其中lr为学习率,学习率不宜过大,过大容易发散,后面会讲。

        举例:构造一个函数如下所示。

x = -10 : 0.1 : 10;
y = 2.2 * (x - 1.65).^2 + 33.3;
figure(4);
plot(x, y);
hold on;
grid on;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东城青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值