韧性是一种美德
MySQL是一个关系型数据库,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下产品。MySQL 是最流行的关系型数据库管理系统之一
MySQL是开源的免费项目,Oracle数据库产品是闭源同时也是收费的。Mysql是中小型数据库,Oracle是大型的,Oracle的解决方案比较成熟
MySQL的基础围绕4点说起
1、存储引擎
2、索引与数据结构
3、log
4、优化器
存储引擎
InnoDB
MySQL5.5之后的默认存储引擎
应用场景:如果应用对事务的完整性有较高的要求,在并发条件下要求数据的一致性,数据操作中包含读、插入、删除、更新,那InnoDB是最好的选择。在计费系统、财务系统等对数据的准确性要求较高的系统中被广泛应用。
优点:提供了具有提交(Commit)、回滚(Rollback)、崩溃恢复能力的事务安全,支持外键。
缺点:相比较于MyISAM,写的处理效率差一点,并且会占用更多的磁盘空间来存储数据和索引
MyISAM
MySQL5.5之前的默认存储引擎
优势:访问速度快
适用场景:对事务的完整性没有要求,或以select、insert为主的应用基本都可以选用MYISAM。在Web、数据仓库中应用广泛。
区别:
-
InnoDB支持事务,MyISAM不支持,对于InnoDB每一条SQL语言都默认封装成事务,自动提交,这样会影响速度,所以最好把多条SQL语言放在begin和commit之间,组成一个事务;
-
InnoDB支持外键,而MyISAM不支持。对一个包含外键的InnoDB表转为MYISAM会失败;
-
InnoDB是聚集索引,使用B+Tree作为索引结构,数据文件是和(主键)索引绑在一起的(表数据文件本身就是按B+Tree组织的一个索引结构),必须要有主键,通过主键索引效率很高。但是辅助索引需要两次查询,先查询到主键,然后再通过主键查询到数据。因此,主键不应该过大,因为主键太大,其他索引也都会很大。
MyISAM是非聚集索引,也是使用B+Tree作为索引结构,索引和数据文件是分离的,索引保存的是数据文件的指针。主键索引和辅助索引是独立的。跨平台应用更方便(表保存为文件形式)
也就是说:InnoDB的B+树主键索引的叶子节点就是数据文件,辅助索引的叶子节点是主键的值;而MyISAM的B+树主键索引和辅助索引的叶子节点都是数据文件的地址指针。
-
InnoDB不保存表的具体行数,执行select count(*) from table时需要全表扫描。而MyISAM用一个变量保存了整个表的行数,执行上述语句时只需要读出该变量即可,速度很快(注意不能加有任何WHERE条件)
那么为什么InnoDB没有了这个变量呢?因为InnoDB的事务特性,在同一时刻表中的行数对于不同的事务而言是不一样的 -
Innodb不支持全文索引,而MyISAM支持全文索引,在涉及全文索引领域的查询效率上MyISAM速度更快高;PS:5.7以后的InnoDB支持全文索引了
-
MyISAM表格可以被压缩后进行查询操作
-
InnoDB支持表、行(默认)级锁,而MyISAM支持表级锁,InnoDB的行锁是实现在索引上的,而不是锁在物理行记录上。潜台词是,如果访问没有命中索引,也无法使用行锁,将要退化为表锁。
8、InnoDB表必须有主键(用户没有指定的话会自己找或生产一个主键),而Myisam可以没有
如何选择Innodb或者myisam:
1. 是否要支持事务,如果要请选择innodb,如果不需要可以考虑MyISAM;
2. 如果表中绝大多数都只是读查询,可以考虑MyISAM,如果既有读也有写,请使用InnoDB。
3. 系统奔溃后,MyISAM恢复起来更困难,能否接受;
4. MySQL5.5版本开始Innodb已经成为Mysql的默认引擎(之前是MyISAM),说明其优势是有目共睹的,如果你不知道用什么,那就用InnoDB,至少不会差。
InnoDB为什么推荐使用自增ID作为主键?
自增ID可以保证每次插入时B+索引是从右边扩展的,可以避免B+树和频繁合并和分裂(对比使用UUID)。如果使用字符串主键和随机主键,会使得数据随机插入,效率比较差。
innodb引擎的4大特性
插入缓冲(insert buffer),二次写(double write),自适应哈希索引(ahi),预读(read ahead)
为什么MyISAM会比Innodb的查询速度快?
INNODB在做SELECT的时候,要维护的东西比MYISAM引擎多很多:
1)数据块,INNODB要缓存,MYISAM只缓存索引块, 这中间还有换进换出的减少;
2)innodb寻址要映射到块,再到行,MYISAM记录的直接是文件的OFFSET,定位比INNODB要快
(phil 注: myisam 更新频率低,所以 索引变更少 . 所以允许每次更新 即更新主索引,也更新付索引,更新 offset)
3)INNODB还需要维护MVCC一致;虽然你的场景没有,但他还是需要去检查和维护
MVCC (Multi-Version Concurrency Control)多版本并发控制
(phil 注: 由于没有了多行,不需要判断 选取可见的那行数据)
myisam 表锁.牺牲了写性能,提高了读性能.
索引与数据结构
为什么在磁盘中要使用B+树来进行文件存储呢?
因为B+树的高度低得缘故,磁盘本身是一个顺序读写快,随机读写慢的系统,那么如果想高效的从磁盘中找到数据,势必需要满足一个最重要的条件:减少寻道次数。以平衡二叉树树为例进行对比,就会发现问题所在了,平衡二叉树太高了
Mysql中 B+树通常是3层或4层,并且在内存中是连续的。
一个高度为 3 的 B+ 树大概可以存放 1170 × 1170 × 16 = 21902400 行数据,已经是千万级别的数据量了
平衡二叉树这种结构的好处是,没有空间浪费,不会存在空余的空间,但坏处是需要取出多个节点,且无法预测下一个节点的位置。这种取出的操作,在内存内进行的时候,速度很快,但如果到磁盘,那么就意味着大量随机寻道。基本磁盘就被查死了
b+树,因为其构建过程中引入了有序数组,从而有效的降低了树的高度,一次取出一个连续的数组,这个操作在磁盘上比取出与数组相同数量的离散数据,要便宜的多。因此磁盘上基本都是b树结构。
不过,b+树结构也不是完美的,与二叉树相比,他会耗费更多的空间。在最恶劣的情况下,要有几乎是元数据两倍的格子才能装得下整个数据集(当树的所有节点都进行了分裂后)。
B+树比B树的优势
一个千万量级别,且存储引擎是MyISAM或者InnoDB的表,其索引树的高度在3-5之间。
B+树的索引树的高度就是logNB(logN/logB)
N表示记录数,B表示每个节点有B个索引。
假设有3000W条数据,每个节点保存64个索引。
那么索引的高度就是(log2^25)/log64=25/6=4
is null 是否会走索引?
有可能走,有可能不走。
优化器评估,全表扫描与走索引(索引会回表)的成本哪个执行成本低。按成本低的方式执行
问题排查方式
General_log 开启可以记录所有执行的LOG,可以用于统计
slow query log 可以查看慢日志
showprocesslist 有权限可以看到所有正在执行的线程SQL,以及执行多长时间
SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX; 可以查看正在锁的事务
kill 命令可以杀死指定线程,比如这个线程死锁了
ACID中
redo log其实保障的是事务的持久性和一致性,而undo log则保障了事务的原子性。
mysql整理结构