视觉SLAM十四讲 – 笔记
第2讲:初识SLAM
1. 概述
经典视觉SLAM架构
- 传感器信息读取。
- 视觉里程计(Visual Odometry, VO)。视觉里程计任务是估算相邻图像间相机的运动,以及局部地图的样子。VO又称为前段(Front End)。
- 后端优化(Optimization)。后端接受不同时刻视觉里程计测量的相机位姿,以及回环检测的信息,对他们进行优化,得到全局一致的轨迹和地图。由于接在VO之后,又称为后端(Back End)。
- 回环检测(Loop Closing)。回环检测判断机器人是否曾经到达过先前的位置。如果检测是回环,它会把信息提供给后端进行处理。
- 建图(Mapping)。它根据估计的轨迹,建立与任务要求对应的地图。
2. 视觉里程计
视觉里程计(Visual Odometry,VO,又称为前段,Front End)关心相邻图像之间的相机运动,最简单的情况当然是两张图像之间的运动关系。
计算机是如何通过图像确定相机的运动呢?
视觉SLAM中,我们只能看到一个个像素,知道它们是某些空间点在相机的成像平面上投影的结果。所以,为了定量地估计相机运动,必须在了解相机与空间点的几何关系之后进行。
VO 能够通过相邻帧间的图像估计相机运动,并恢复场景的空间结构。叫它为“里程计”是因为它和实际的里程计一样,只计算相邻时刻的运动,而和再往前的过去的信息没有关联。
假定我们已有了一个视觉里程计,估计了两张图像间的相机运动。那么,只要把相邻时刻的运动“串”起来,就构成的机器人的运动轨迹,从而解决了定位问题。另一