人人看得懂的顶会论文系列之:SHAP
(NeurIPS:Conference and Workshop on Neural Information Processing Systems) 2017,引用量5940
论文标题:A Unified Approach to Interpreting Model Predictions
Author:华盛顿大学计算机科学学院的Scott M. Lundberg和Su-In Lee。
1.博弈论(Game Theory)
博弈论主要研究,参与者在竞争性环境中怎样决策。基本思想是:每个参与者都在寻求最大化自己的利益,他们的选择会受到其他参与者选择的影响。最有名的案例应该就是囚徒困境(Prisoner’s Dilemma)、联盟博弈(Coalitional Game)。
联盟博弈(Coalitional Game)是一种合作博弈,其中多个参与者通过形成联盟来共同追求目标。在这个游戏中,参与者需要决定是否加入联盟,以及如果加入,如何分配获得的收益。
Shapley值
Shapley值(Shapley Value)是一种在合作博弈中分配收益的方法,它由数学家刘易斯·沙普利(Lloyd S. Shapley)提出,用于解决如何公平地分配合作博弈中获得的收益问题。
Shapley值的基本思想是,每个参与者对博弈的贡献应该得到公平的回报。它通过计算每个参与者加入不同联盟的概率,以及他们在该联盟中的贡献,来计算每个参与者的Shapley值。Shapley值确保了每个参与者对博弈的贡献都能得到公平的回报,这是一种公平的合作博弈收益分配方法。
一个计算Shapley值的案例如下: 假设有员工A、B、C,参加一个团队项目,完成后公司将提供一笔奖金。 员工A单独参加可以赢得1万元,员工B单独参加可以赢得1.5万元,员工C单独参加可以赢得2万元。 各