1、Jacobian矩阵与梯度矩阵
1.1Jacobian矩阵
1.2梯度矩阵
1.3偏导和梯度计算
2、一阶实矩阵微分与Jacobian矩阵辨识
一阶实矩阵微分
实矩阵微分具有以下两个基本性质:
转置 矩阵转置的微分等于矩阵微分的转置,即有d(XT)=(dX)Td(X^T)=(dX)^Td(XT)=(dX)T。
线性 d(αdX+βdY)=αdX+βdYd(\alpha dX+\beta dY)=\alpha dX+\beta dYd(αdX+βdY)=αdX+βdY。
下面是矩阵微分的常用计算公式:
(1)常数矩阵的微分矩阵为零矩阵,即dA=OdA=OdA=O。
(2)常数α\alphaα与矩阵XXX的乘积的微分矩阵d(αX)=αdXd(\alpha X)=\alpha dXd(αX)=αdX。
(3)矩阵转置的微分矩阵等于原矩阵的微分矩阵的转置,即d(XT)=(dX)Td(X^T)=(dX)^Td(XT)=(dX)T。
(4)两个矩阵函数的和(差)的微分矩阵为d(U±V)=dU±dVd(U \pm V)=dU \pm dVd(U±V)=dU±dV。
(5)常数矩阵与矩阵乘法的微分矩阵为d(AXB)=A(dX)Bd(AXB)=A(dX)Bd(AXB)=A(dX)B。
(6)矩阵函数U=F(X),V=G(X),W=H(X)U=F(X),V=G(X),W=H(X)U=F(X),V=G(X),W=H(X)乘积的微分矩阵为:
d(UV)=(dU)V+U(dV)d(UVW)=(dU)VW+U(dV)W+UV(dW)
d(UV)=(dU)V+U(dV)\\
d(UVW)=(dU)VW+U(dV)W+UV(dW)
d(UV)=(dU)V+U(dV)d(UVW)=(dU)VW+U(dV)W+UV(dW)
(7)矩阵XXX的迹的矩阵微分d(tr(X))d(tr(X))d(tr(X))等于矩阵微分dXdXdX的迹tr(dX)tr(dX)tr(dX),即:
d(tr(X))=tr(dX)
d(tr(X))=tr(dX)
d(tr(X))=tr(dX)
特别地,矩阵函数F(X)F(X)F(X)的迹的矩阵微分为d(tr(F(X)))=tr(d(F(X)))d(tr(F(X)))=tr(d(F(X)))d(tr(F(X)))=tr(d(F(X)))。
(8)行列式的微分为:
d∣X∣=∣X∣tr(X−1dX)
d|X|=|X|tr(X^{-1}dX)
d∣X∣=∣X∣tr(X−1dX)
特别地,矩阵函数F(X)F(X)F(X)的行列式的微分为d∣F(X)∣=∣F(X)∣tr(F−1(X)d(F(X)))d|F(X)|=|F(X)|tr(F^{-1}(X)d(F(X)))d∣F(X)∣=∣F(X)∣tr(F−1(X)d(F(X)))。
(9)矩阵函数的Kronecker积的微分矩阵为:
d(U⊗V)=(dU)⊗V+U⊗dV
d(U \otimes V)=(dU) \otimes V+U \otimes dV
d(U⊗V)=(dU)⊗V+U⊗dV
(10)矩阵函数的Hadamard积的微分矩阵为:
d(U∗V)=(dU)∗V+U∗dV
d(U*V)=(dU)*V+U*dV
d(U∗V)=(dU)∗V+U∗dV
(11)向量化函数vec(X)vec(X)vec(X)的微分矩阵等于XXX的微分矩阵的向量化函数,即
d(vec(X))=vec(dX)
d(vec(X))=vec(dX)
d(vec(X))=vec(dX)
(12)矩阵对数的微分矩阵为
dlogX=X−1dX
d \log X=X^{-1}dX
dlogX=X−1dX
特别地,矩阵函数的对数的微分矩阵为dlog(F(X))=F−1(X)d(F(X))d \log(F(X))=F^{-1}(X)d(F(X))dlog(F(X))=F−1(X)d(F(X))。
(13)逆矩阵的微分矩阵为
d(X−1)=−X−1(dX)X−1
d(X^{-1})=-X^{-1}(dX)X^{-1}