FCHD: A fast and accurate head detector,头部检测的理解与实现(tensorflow)

本文介绍了FCHD,一种基于全卷积的头部检测模型,该模型在GPU上以5fps的速度运行,平均精度达到0.70。通过精心设计的锚点解决了小目标检测问题,提供了与Faster-RCNN相比的高性能和低延迟,适用于边缘计算的监控应用。代码已开源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:

https://arxiv.org/abs/1809.08766v1

论文摘要:

Abstract—In this paper, we propose FCHD-Fully Convolutional Head Detector, which is an end-to-end trainable head detection model, which runs at 5 fps and with 0.70 average precision (AP), on a very modest GPU. Recent head detection techniques have avoided using anchors as a starting point for detection especially in the cases where the detection has to happen in the wild. The reason is poor performance of anchorbased techniques under scenarios where the object size is small. We argue that a good AP can be obtained with carefully designed anchors, where the anchor design choices are made based on the receptive field size of the hidden layers. Our contribution is two folds. 1) A simple fully convolutional anchor based model which is end-to-end trainable and has a very low inference time. 2) Carefully chosen anchor sizes which play a key role in getting good average precision. Our model

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值