相比于较为丰富的评分的显示反馈数据集,隐式反馈数据集目前较少。相比于评分,隐式反馈对用户喜好进行建模更加困难,因为用户行为充满了不确定性;但同时也应该看到,隐式反馈提供的内容更为丰富,如浏览、注册,加购物车、购买等,这些对于实际电商中的推荐行为更加有意义,也更加有利于解决冷启动问题。
Retailrocket 商品评论和推荐数据
这个数据集包含了常规的用户,物品,时间戳以外,还有浏览,加购物车,购买三种行为信息。除此之外,数据集还包含了每个商品的性质信息以及商品目录结构,但经过处理后这些信息较难被理解,商品目录于用户实际购买行为也几乎无关。
下载地址:https://www.kaggle.com/retailrocket/ecommerce-dataset
Steam Video Games
数据集包含了用户id,游戏名,用户行为(玩/购买),把玩游戏时间作为用户评分
下载地址:https://www.kaggle.com/tamber/steam-video-games/data