【推荐系统】隐式反馈数据集

本文探讨了隐式反馈数据集在推荐系统中的价值及挑战,介绍了两个具体的数据集——Retailrocket商品评论和推荐数据集及SteamVideoGames数据集,它们分别提供了丰富的用户行为数据,如浏览、加购和购买等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相比于较为丰富的评分的显示反馈数据集,隐式反馈数据集目前较少。相比于评分,隐式反馈对用户喜好进行建模更加困难,因为用户行为充满了不确定性;但同时也应该看到,隐式反馈提供的内容更为丰富,如浏览、注册,加购物车、购买等,这些对于实际电商中的推荐行为更加有意义,也更加有利于解决冷启动问题。

Retailrocket 商品评论和推荐数据

这个数据集包含了常规的用户,物品,时间戳以外,还有浏览,加购物车,购买三种行为信息。除此之外,数据集还包含了每个商品的性质信息以及商品目录结构,但经过处理后这些信息较难被理解,商品目录于用户实际购买行为也几乎无关。

下载地址:https://www.kaggle.com/retailrocket/ecommerce-dataset


Steam Video Games

数据集包含了用户id,游戏名,用户行为(玩/购买),把玩游戏时间作为用户评分
下载地址:https://www.kaggle.com/tamber/steam-video-games/data



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值