【罪犯画像】Constructing Bayesian networks for criminal profiling from limited data

本研究采用贝叶斯网络改进的K2算法进行罪犯特征预测,实验结果显示模型预测准确率远超专家经验评估。论文通过构建罪犯犯罪手法及个人特点的节点,并引入了信任程度计算方式来评估预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一篇罪犯画像中较为经典的论文,同样是采用贝叶斯网络的方法,论文中的实验显示该模型对罪犯特征的预测准确率远超专家的经验评估。

1. 论文中以罪犯的犯罪手法和个人特点作为节点


本文采用了改进的K2算法构建贝叶斯网络,同时提出了 confidence level 的计算方式来评估对所得结果的信任程度


最终实验结果如下:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值