conda envs cannot use pip

本文档介绍了如何使用Python的`ensurepip`模块检查pip的安装状态,以及通过下载get-pip.py脚本来手动安装或升级pip。遵循文中步骤,用户可以从命令行进入get-pip.py文件所在目录并执行安装命令,完成Python依赖管理工具pip的配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、 首先执行命令:

   python -m ensurepip --default-pip

2、 下载 get-pip.py 文件 地址为

 https://bootstrap.pypa.io/get-pip.py

3、 最后从命令行进入到 get-pip.py 所在的目录,执行命令 :

python get-pip.py

:\Miniconda\envs\lianxi\python.exe -X pycache_prefix=C:\Users\ZDW\AppData\Local\JetBrains\PyCharm2025.1\cpython-cache "D:/PyCharm 2025.1.2/plugins/python-ce/helpers/pydev/pydevd.py" --multiprocess --qt-support=auto --client 127.0.0.1 --port 50014 --file D:\CXLX\.py\venv\fly.py 已连接到 pydev 调试器(内部版本号 251.26094.141)Traceback (most recent call last): File "<frozen importlib._bootstrap>", line 991, in _find_and_load File "<frozen importlib._bootstrap>", line 975, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 671, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 783, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "E:\Miniconda\envs\lianxi\lib\site-packages\tensorflow\__init__.py", line 478, in <module> importlib.import_module("keras.optimizers") File "E:\Miniconda\envs\lianxi\lib\importlib\__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\__init__.py", line 25, in <module> from keras import models File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\models\__init__.py", line 3, in <module> from keras.models import experimental File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\models\experimental\__init__.py", line 3, in <module> from keras.src.models.sharpness_aware_minimization import SharpnessAwareMinimization File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\__init__.py", line 21, in <module> from keras.src import models File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\models\__init__.py", line 18, in <module> from keras.src.engine.functional import Functional File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\engine\functional.py", line 25, in <module> from keras.src import backend File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\backend.py", line 35, in <module> from keras.src.engine import keras_tensor File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\engine\keras_tensor.py", line 19, in <module> from keras.src.utils import object_identity File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\utils\__init__.py", line 53, in <module> from keras.src.utils.feature_space import FeatureSpace File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\utils\feature_space.py", line 20, in <module> from keras.src.engine import base_layer File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\engine\base_layer.py", line 43, in <module> from keras.src.saving.legacy.saved_model import layer_serialization File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\saving\legacy\saved_model\layer_serialization.py", line 23, in <module> from keras.src.saving.legacy.saved_model import save_impl File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\saving\legacy\saved_model\save_impl.py", line 34, in <module> from keras.src.saving.legacy.saved_model import load as keras_load File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\src\saving\legacy\saved_model\load.py", line 29, in <module> from keras.protobuf import saved_metadata_pb2 File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\protobuf\saved_metadata_pb2.py", line 16, in <module> from keras.protobuf import versions_pb2 as keras_dot_protobuf_dot_versions__pb2 File "E:\Miniconda\envs\lianxi\lib\site-packages\keras\protobuf\versions_pb2.py", line 36, in <module> _descriptor.FieldDescriptor( File "E:\Miniconda\envs\lianxi\lib\site-packages\google\protobuf\descriptor.py", line 553, in __new__ _message.Message._CheckCalledFromGeneratedFile() TypeError: Descriptors cannot be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower). More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates python-BaseException
07-02
/home/cw/anaconda3/bin/conda run -n GPU_pytorch --no-capture-output python /tmp/fEokboZTuK/main.py A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "/tmp/fEokboZTuK/main.py", line 1, in <module> import torch File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/__init__.py", line 1477, in <module> from .functional import * # noqa: F403 File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/cw/.conda/envs/GPU_pytorch/lib/python3.9/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /tmp/fEokboZTuK/main.py:89: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requi
04-01
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值