AwesomeTang
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Pandas | 06】数据转换篇「astype, split,split,to_datetime」
数据分析中,数据的转换是非常重要的一步。无论是字符串操作、时间格式处理、类别型数据处理还是排序与重新索引,这些技能都能帮助我们更好地整理和准备数据,使其更符合分析需求。在数据分析中,我们经常需要将字符串型数据(如类别或标识符)转换为数值型数据以便进行数学运算或统计分析。在这一章节中,我们将详细介绍如何使用Pandas进行这些常见的数据转换操作,并通过实际示例说明每种操作的应用场景和方法。有时候我们需要将数值型数据转换为字符串格式,例如进行拼接、合并或者其他字符串操作。字符串操作是处理文本型数据的基础。原创 2025-02-09 14:48:58 · 83 阅读 · 0 评论 -
【Pandas | 05】窗口函数「rolling,expanding」
前言Pandas中的窗口函数应用—— .rolling()和.expanding()。.rolling().rolling()表示相邻的N个数据项为一个窗口,可以进一步对窗口内的数据做聚合运算。示例数据ser = pd.Series([1,2,3,None,4,None,6])print(ser)"""0 1.01 2.02 3.03 NaN4 4.05 NaN6 6.0dtype: float64""".rolling()原创 2021-05-03 15:02:14 · 1409 阅读 · 0 评论 -
【Pandas | 04】空值处理篇「isna,isnull,notna,notnull,fillna,dropna」
前言Pandas中关于空值的处理方式,简单来对比总结一下~运行环境:Jupyter notebook空值比较通过.isna()和.isnull来判断是否为空值,可以用于DataFrame和Series;新建一个DataFramedf = pd.DataFrame(dict(age=[5, 6, np.NaN], born=[pd.NaT, pd.Timestamp('1939-05-27'),原创 2021-04-11 15:55:43 · 1870 阅读 · 0 评论 -
【Pandas | 03】数据拼接篇「concat,merge,append,join」
前言Pandas中关于数据帧的拼接有concat,merge,append,join四种方法,本项目简单来对比总结一下~运行环境:Jupyter notebook概述相对来说,concat和merge能做的事更多些,append和join相当于只是他们的子功能,不过如果只是简单粗暴的连接多个DataFrame,append和join可能用起来更方便一些。方式特点用法示例concat通过行/列索引进行连接pd.concat([df1, df2])merge通过原创 2021-04-05 22:18:26 · 1657 阅读 · 0 评论 -
【Pandas | 02】数据筛选篇「df.iloc,df.loc」
前言本文主要是关于Pandas中.iloc和.loc的用法示例。Pandas版本:V1.1.1运行环境:Jupyter notebook模块导入 & 数据读取import pandas as pddf = pd.read_csv('/home/kesci/work/Pandas教程/lakers_shots.csv')df.head()通过位置定位df.iloc行筛选传入整型数字,此时返回的是pandas.series;# 此时返回的seriesdf.iloc[0原创 2021-04-04 13:37:53 · 1416 阅读 · 2 评论 -
【Pandas | 01】数据读取篇「read_csv,read_excel,read_json,read_sql」
前言本系列教程中,Pandas默认版本为V1.1.1,如遇到报错,可以尝试升级Pandas版本。代码是基于notebook环境编写运行的,如果是使用Pycharm等编辑器,df.head()等代码会失效。推荐使用Jupyter notebook,可以通过语句pip install jupyter来进行安装,在终端输入jupyter notebook来使用。导入Pandasimport pandas as pdCSV文件读取csv是在数据处理过程中比较常见的一种文件格式。采用逗号分隔的纯原创 2021-04-04 11:50:59 · 596 阅读 · 0 评论 -
【Pandas | 00】概述——认识Pandas
Pandas是数据科学家的瑞士军刀,提供了一整套处理结构化数据的强大工具。掌握Pandas不仅能提升数据分析效率,还能为学习其他高级工具打下基础。通过以上内容,你可以对Pandas有一个全面的了解,并开始实践使用!接下来可以尝试自己动手完成一些小项目或练习题来巩固所学知识。原创 2025-02-09 10:02:04 · 100 阅读 · 0 评论