
机器学习
文章平均质量分 91
AwesomeTang
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【梯度下降】通过一元线性回归模型理解梯度下降法
前言 关于线性回归相信各位都不会陌生,当我们有一组数据(譬如房价和面积),我们输入到excel,spss等软件,我们很快就会得到一个拟合函数:hθ(x)=θ0+θ1xh_\theta(x)=\theta_0+\theta_1xhθ(x)=θ0+θ1x 但我们有没有去想过,这个函数是如何得到的? 如果数学底子还不错的同学应该知道,当维数不多的时候,是可以通过正规方程法求得的,但如果维数过多的话,像图像识别/自然语言处理等领域,正规方程法就没法满足需求了,这时候便需要***梯度下降法***来实现了。 梯度原创 2021-04-19 14:31:41 · 636 阅读 · 0 评论 -
【机器学习 | Naive Bayes】通过简单例子来理解朴素贝叶斯算法~
朴素贝叶斯(Naive Bayes) 简单理解 我们可以先通过一个简单的例子来了解什么是朴素贝叶斯算法。 我们现在有如下数据: 颜色 水果 红 水果A 黄 水果B 红 水果A 黄 水果B 黄 水果B 红 水果B 那么我现在手上有一个黄色的水果,我需要去预测它是哪种水果。 根据上面的样本数据,我们分别计算出颜色为黄色情况下,是水果A和水果B的概率: P(水果A∣黄色)=33=1P(水果A|黄色) = \frac{3}{3} = 1P(水果A∣黄色)=33=1 P(水果原创 2021-04-19 13:52:03 · 722 阅读 · 0 评论