Spark ML基本算法【总结器】

该博客介绍了Spark MLlib中的Summarizer库,用于计算向量和矩阵的统计摘要。内容包括如何计算均值、方差等统计指标,并通过代码实战展示了这些操作,最后分析了执行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.简介

通过使用Summarizer提供矢量列【向量、矩阵】汇总统计Dataframe。可用的指标是按列的最大值,最小值,平均值,总和,方差,std和非零数,以及总数。

二.代码实战【以均值、方差为例】

package spark2.ml

import org.apache.log4j.{
   
   Level, Logger}
import org.apache.spark.ml.linalg.{
   
   Vector, Vectors}
import org.apache.spark.sql.SparkSession
import org.apache.spark.ml.stat.Summarizer._
/**
 * Created by Administrator on 2020/7/3.
  */
object MLSummary {
   
   
  /**
    * 设置日志级别
    */
  Logger.getLogger(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值