- 博客(222)
- 资源 (21)
- 收藏
- 关注
原创 第二十三天:Python异常处理
本文介绍了Python异常处理的核心概念与实践方法。主要内容包括:异常处理的基础概念与重要性,try-except-else-finally结构的详细解析,以及Python内置异常类型体系。异常处理是编程中管理错误的关键机制,可提高程序稳定性、用户体验和代码可维护性。文章详细讲解了各种异常处理结构的使用场景和最佳实践,并系统梳理了Python的异常类层次结构和常见内置异常类型。通过合理的异常处理,开发者可以构建更健壮、可靠的Python应用程序。
2025-06-11 14:43:05
2
原创 第二十二天:Python函数进阶
本文系统介绍了Python函数参数的使用技巧和函数对象特性。主要内容包括:1)默认参数的定义与使用注意事项,特别是避免可变对象作为默认参数的陷阱;2)可变参数*args和**kwargs的原理与应用场景,以及它们如何收集位置参数和关键字参数;3)Python函数参数的完整顺序规则,包括仅关键字参数的特殊用法。此外,还阐述了Python函数作为"一等公民"的特性,如可赋值、可传递、可返回等能力。这些知识对于编写灵活、可维护的Python代码至关重要,特别是在设计API和实现装饰器等高级功能
2025-06-11 14:41:58
2
原创 第二十一天:Python列表推导式与生成器表达式
Python列表推导式高效创建列表的语法糖 摘要: 本文介绍了Python中列表推导式的基础概念、语法结构及应用场景。列表推导式通过简洁的语法[expression for item in iterable]替代传统for循环,可快速生成新列表,具有代码简洁和执行速度快的优势。文章详细讲解了基本用法、条件过滤(单条件和复杂条件)、嵌套循环等进阶技巧,并通过商品价格计算、温度转换等实例展示其应用。同时对比了列表推导式与生成器表达式的内存效率差异,指出生成器表达式更适合处理大数据集。性能测试表明列表推导式通常比
2025-06-11 14:40:12
2
原创 第二十天:Python文件(File)操作详解
本文系统介绍了Python文件操作的核心概念与实践技巧。第一部分阐述了文件系统原理、打开模式选择及编码处理要点,强调了UTF-8编码的优势和使用场景。第二部分详细讲解了文件打开关闭的两种方式,重点推荐with语句的自动资源管理机制,并分析了高级参数对文件处理的影响。第三部分提供了多种文件读取方法,针对大文件处理给出了内存优化的迭代方案。全文贯穿专业实践建议,涵盖文件描述符、缓冲区等底层原理,为Python开发者提供了全面的文件操作指南。
2025-06-11 14:39:03
2
原创 第十九天:Python数据库编程基础
SQLite3是Python内置的轻量级嵌入式数据库模块,适用于小型到中型应用。摘要要点:1) SQLite无需配置,采用单文件存储,支持ACID特性;2) 基本操作包括连接建立、CRUD操作和事务管理,示例代码展示了参数化查询和批量操作;3) 遵循DB-API 2.0规范,通过游标执行SQL,注意资源释放和异常处理;4) 支持事务的原子性操作,确保数据一致性。SQLite3以其简单易用、低资源消耗成为Python本地数据库存储的理想选择。
2025-06-11 14:37:37
2
原创 OceanBase区块链表使用:不可变表特性深度解析(专业篇)
OceanBase 不可变表(Immutable Table)是一种特殊设计的表类型,其核心特性在于数据一旦写入便无法修改,只能追加新数据或在一定保留期后删除过期数据。这种设计理念源自区块链技术的不可篡改特性,但 OceanBase 对其进行了优化,去除了区块链表内部的记录链接结构,从而获得了更高的性能表现。不可变表的核心特性包括:只读性:已写入的数据行不可修改,只能插入新行保留期机制:必须为表和数据行指定保留期限,过期数据可删除自动隐藏列:系统会为不可变表自动添加隐藏的元数据列
2025-06-11 09:21:28
50
原创 OceanBase存储引擎选择:不同引擎比较与架构设计(专业篇)
OceanBase存储引擎采用创新的LSM-Tree架构设计,通过基线数据(SSTable)与增量数据(MemTable)分离存储实现高性能与高压缩率。其核心创新包括:行列混合编码的微块结构(16KB)实现3-5倍压缩比,双索引MemTable优化读写性能,以及分布式架构下的多副本强一致性。相比传统数据库页存储,OceanBase的变长压缩微块消除存储空洞,使空间利用率达90%以上,在普通硬件上即可支撑金融级负载,实现了百万级写入QPS与亚毫秒级点查询延迟的卓越性能。
2025-06-11 08:58:17
35
原创 OceanBase图数据查询:图关系数据处理全面指南(专业篇)
OceanBase图数据处理技术解析 摘要:本文详细阐述了分布式关系型数据库OceanBase处理图数据的创新方法。在基础架构方面,OceanBase采用"基线存储+内存增量"的混合架构,通过对比传统数据库,展示了其在写入性能(内存处理)、读取效率(缓存优化)和数据规模(分布式扩展)上的优势。在图模型映射上,提出了邻接表模型和属性图模型两种实现方案,并对比了它们的查询灵活性、写入性能和存储效率等特性。 文章重点介绍了基于SQL扩展的图查询方案,包括使用递归CTE实现路径查询、通过存储过程
2025-06-11 08:56:31
45
原创 OceanBase机器学习SQL扩展:机器学习函数(专业篇)
OceanBase作为一款企业级分布式数据库,在4.3版本后开始深度融合AI能力,其技术架构主要体现在两个主要方向上:近似搜索:利用大语言模型(LLM)的嵌入(embedding)技术,将非结构化数据(如图片、文本)转换为向量数据并存储于数据库中。通过数据库系统提供的向量运算和近似度查询功能,实现搜索推荐和非结构化数据查询的应用场景。检索增强生成(RAG):大模型虽然具备自然语言对话、文本总结等通用能力,但受限于预训练时的知识范围。OceanBase可以存储问答语料并为大语言模型提供语料检索
2025-06-11 08:52:26
59
原创 Spring Boot Actuator 全面详解:从入门到精通(保姆级教程)
Spring Boot Actuator 是一个生产级监控工具,为应用提供健康检查、指标收集和管理功能。主要特性包括:1)内置/health、/info、/metrics等端点,监控应用状态;2)可自定义健康检查指标;3)支持动态调整日志级别等运行时配置。通过简单配置即可启用,默认暴露health和info端点,可自定义暴露范围和访问路径。Actuator帮助开发者实时掌握应用运行状况,是Spring Boot应用上线的必备组件。
2025-06-11 07:30:00
396
原创 SpringBoot Admin Server 监控平台全面详解(保姆级教程)
SpringBoot Admin是一个用于管理和监控SpringBoot应用程序的开源项目,它通过图形化界面展示SpringBoot应用的各项指标和运行状态。与传统的监控系统不同,SpringBoot Admin专门为SpringBoot应用设计,能够直观地展示应用的健康状况、JVM内存、线程信息、环境属性等关键指标。通俗理解:想象SpringBoot Admin就像是一个汽车的仪表盘,而你的各个SpringBoot应用就是汽车的各个部件。通过这个"仪表盘",你可以实时看到"发动机转速"(CPU使用率)
2025-06-11 07:30:00
715
原创 编程基础:学习Python是进入AI领域的必经之路(文末含学习路线与知识推荐)
在人工智能迅猛发展的今天,Python已成为AI开发领域无可争议的"王者语言"。无论是深度学习框架TensorFlow和PyTorch,还是数据处理库NumPy和Pandas,Python构建了AI开发生态系统的核心支柱。本文将全面剖析Python在AI领域的市场行情,深入探讨学习Python的战略重要性,系统梳理AI开发所需的Python知识体系,并提供一条科学高效的学习路径,帮助读者从零开始掌握这门AI时代的必备语言。Python市场行情:AI开发的首选语言Python在编程语言界的地位近年来持续
2025-06-10 16:47:36
34
原创 编程基础:算法与数据结构(时间复杂度分析、常用算法实现等)深度解析
算法是解决特定问题的一系列明确的计算步骤。一个有效的算法应当具备以下五个基本特性:有穷性:算法必须在执行有限步骤后终止确定性:算法的每一步骤必须有明确的定义,不会产生二义性可行性:算法中的操作都可以通过已经实现的基本运算执行有限次来实现输入:算法有零个或多个输入输出:算法有一个或多个输出专业解读:在计算机科学中,算法是计算过程的抽象描述,它独立于具体的编程语言和硬件平台。算法的设计需要考虑正确性、可读性、健壮性、效率等多个维度。
2025-06-10 15:24:46
76
原创 编程基础:并行计算技术(多线程、多进程、GPU加速(CUDA)等)深度解析
并行计算是指同时使用多个计算资源解决计算问题,主要分为位级、指令级、数据并行和任务并行四种类型。关键概念包括并行与并发的区别、加速比、效率和负载均衡等指标。多线程编程是实现并行计算的重要技术,线程具有轻量级、共享内存和独立调度的特点,生命周期包含新建、就绪、运行、阻塞和终止等状态。Java中可通过继承Thread类或实现Runnable接口创建线程,并使用synchronized和wait/notify机制解决线程同步与通信问题。并行计算广泛应用于大数据处理、科学计算和实时系统等领域。
2025-06-10 15:23:39
73
原创 数学基础:数值计算基础(数值稳定性、条件数、凸优化等)深度解析
数值稳定性(Numerical Stability)是数值算法在计算过程中对舍入误差积累的敏感程度。一个算法如果在计算过程中能够控制舍入误差的增长,使得最终结果相对准确,则称该算法是数值稳定的;反之,若舍入误差被放大导致结果不可靠,则称该算法是数值不稳定的。条件数(Condition Number)量化了问题对于输入扰动的敏感程度,与具体算法无关,是问题本身的属性。集合C⊆ℝⁿ称为凸集,如果对于任意x,y∈C和θ∈[0,1],有θx + (1-θ)y∈C。
2025-06-10 15:21:53
30
原创 数学基础:信息论核心概念(熵、交叉熵、KL散度、互信息等)深度解析
信息熵(Entropy)是信息论中最基础且核心的概念,由克劳德·香农在1948年提出,用于量化信息的不确定性。交叉熵(Cross Entropy)衡量两个概率分布间的差异程度。KL散度可以理解为"使用分布Q近似分布P时,额外需要的平均信息量"。它不是真正的距离度量(因为不对称),但在衡量分布差异时极为有用。互信息可以理解为"知道Y的值后,X的不确定性减少的量",或者"X和Y共享的信息量"。它比相关系数更通用,能捕捉非线性关系。
2025-06-10 15:19:52
30
原创 数学基础: 微积分核心概念(导数与梯度、链式法则、偏微分、优化理论等)深度解析
导数是微积分的核心概念之一,它描述的是函数在某一点处的瞬时变化率。链式法则(Chain Rule)是微积分中用于计算复合函数导数的基本法则。偏导数是多变量函数对其中一个变量的导数,而保持其他变量恒定。
2025-06-10 15:17:08
59
原创 数学基础: 概率与统计(概率分布、贝叶斯定理、假设检验、马尔可夫链等)深度解析
概率论是研究随机现象数量规律的数学分支,它为我们提供了量化不确定性的工具。在现代人工智能领域,概率论构成了机器学习、深度学习等技术的数学基础。贝叶斯定理是概率论中描述条件概率关系的重要定理:假设检验是统计推断的核心方法,用于判断样本数据是否支持某个统计假设。P(A|B) = P(B|A)P(A)/P(B)马尔可夫性质:系统下一状态仅取决于当前状态,与历史无关:P(X_{t+1}|X_t,X_{t-1},…,X_0) = P(X_{t+1}|X_t)
2025-06-10 15:14:00
91
原创 数学基础:线性代数核心概念(矩阵运算、特征值与特征向量、奇异值分解(SVD)、张量运算等)深度解析
矩阵是线性代数中最基本的数据结构之一,它是由m×n个数排成的m行n列的数表。特征值和特征向量是线性代数中极其重要的概念,它们揭示了矩阵的内在特性。奇异值分解(Singular Value Decomposition, SVD)是线性代数中一种重要的矩阵分解方法,适用于任意矩阵,而不仅限于方阵。张量是多维数组的推广,是向量和矩阵的高维扩展。
2025-06-10 15:10:50
50
原创 SpringBoot整合Shiro全面指南:从入门到精通(亲测可用)
Apache Shiro是一个强大的Java安全框架,提供认证、授权、加密和会话管理功能。其核心组件包括Subject(当前用户)、SecurityManager(安全管理器)、Realm(安全数据源)等。Shiro认证流程通过获取用户、创建令牌、执行登录实现。在SpringBoot中整合Shiro需配置拦截规则、创建安全管理器和自定义Realm,并可通过注解和Thymeleaf标签扩展功能。自定义Realm需实现认证和授权逻辑,查询用户角色权限信息。整个架构类比小区门禁系统,简单易用且功能完善。
2025-06-10 07:30:00
842
原创 SpringBoot集成Spring Security全解:从入门到精通实战指南(亲测可用)
Spring Security是Spring家族中负责认证与授权的安全框架。本文介绍了其核心概念:认证(Authentication)验证用户身份,授权(Authorization)控制资源访问权限。框架架构包含SecurityContextHolder、AuthenticationManager等关键组件,通过过滤器链实现安全控制。在SpringBoot集成方面,展示了基础配置步骤:添加依赖、继承WebSecurityConfigurerAdapter配置类、定义内存用户和权限控制规则。文章还提供了控制器
2025-06-10 07:30:00
1285
原创 第十八天:Python函数基础详解
函数编程基础摘要(149字) 函数是编程中的核心概念,指可重复调用的代码块,具有封装性、模块化和可重用特性。Python使用def关键字定义函数,包含函数名、参数、文档字符串和函数体。函数调用时创建独立命名空间,按位置或关键字传递参数,支持默认值设置。参数传递采用对象引用机制,可变对象在函数内修改会影响原始数据。函数提高代码复用性、可读性和可维护性,是程序模块化设计的基础工具。良好函数命名应遵循snake_case规范,明确体现功能。理解函数执行流程和内存模型对掌握编程至关重要。
2025-06-09 12:41:24
13
原创 第十七天:Python模块与包详解
Python模块基础与使用指南 摘要:本文系统介绍了Python模块的基础概念与使用方法。模块是包含Python代码的.py文件,用于组织相关功能,通过命名空间避免命名冲突。文章详细讲解了模块的创建、结构、命名规则和最佳实践,包括文档字符串、测试代码的规范写法。在模块导入方面,对比分析了import、from...import等多种方式的特点与适用场景,解释了模块搜索路径机制和相对/绝对导入的区别。最后针对循环导入等常见问题提供了解决方案。掌握这些知识能帮助开发者编写更规范、可维护的Python代码。
2025-06-09 12:40:33
68
原创 第十六天:Python数据结构互相转换(全网最全)
Python提供了多种内置数据结构,每种结构都有其独特的特点和适用场景。理解这些数据结构的特性和相互转换方法是Python编程的基础技能。元组(Tuple):不可变有序序列,用圆括号表示,如(1, 2, 3)。一旦创建,其元素不能被修改、添加或删除。元组通常用于存储不应更改的相关数据集合。列表(List):可变有序序列,用方括号表示,如[1, 2, 3]。列表可以动态修改,是最常用的Python数据结构之一。字典(Dictionary):可变键值对集合,用花括号表示,如{'a': 1, 'b':
2025-06-09 12:39:28
109
原创 第十五天:Python冻结集合(frozenset)详解
Python提供了两种主要的集合类型:可变集合(set)和不可变集合(frozenset)。它们在Python类型体系中的位置如下表所示:集合类型 可变性 可哈希性 使用场景 示例set 可变 不可哈希 需要动态增删元素的集合 {1, 2, 3}frozenset 不可变 可哈希 需要作为字典键或元素的集合 frozenset([1, 2, 3])集合(Set)是Python中的一种内置数据类型,用于存储无序的唯一元素。与列表和元组不同,集合不支持索引操作,但提供了高效的成员检测和数学集合运算。
2025-06-09 12:38:11
69
原创 第十四天:Python数组(array)类型详解
Python的array模块提供了高效存储同类型数值数据的数组结构,相比列表更节省内存且操作更快。文章详细解析了array模块的基本概念、与列表的对比、适用场景及具体使用方法。主要内容包括:1)array的类型码(type code)系统;2)数组创建与初始化方法;3)基本元素访问和修改操作;4)特殊属性和方法如typecode、itemsize、buffer_info()等;5)高级文件I/O操作。array模块特别适合数值密集型计算、内存优化及与C/C++代码交互等场景,是处理大量同类型数据的理想选择。
2025-06-09 12:37:00
64
原创 第十三天:Python控制结构与循环控制
本文介绍了Python中条件语句和循环结构的使用方法。条件语句部分详细讲解了if-elif-else结构的语法、执行原理和应用场景,包括嵌套条件和真值测试。循环部分重点阐述了for循环的工作原理、可迭代对象类型,以及range()、enumerate()和zip()等实用函数的使用技巧。文章通过代码示例展示了如何高效处理各种条件判断和迭代需求,并提供了最佳实践建议。这些基础知识是Python编程的重要组成部分,适用于数据处理、自动化脚本等多种应用场景。
2025-06-09 12:35:47
5
原创 SpringBoot日志脱敏:敏感信息保护全面指南
日志脱敏技术实现方案 本文介绍了日志脱敏的核心概念和技术实现,主要内容包括: 日志脱敏概述:定义日志脱敏为对系统日志中敏感信息的变形处理,满足合规要求并保护数据安全。列举了常见敏感信息类型及脱敏建议格式。 基础实现方案:通过正则表达式匹配替换实现简单脱敏,提供手机号、身份证等常见信息的脱敏工具类,分析其简单易用但维护成本高的特点。 高级注解方案:提出基于自定义注解的优雅实现,定义脱敏策略枚举和@Sensitive注解,通过JSON序列化器自动处理标记字段,实现统一高效的脱敏处理。 该方案从简单到复杂,提供了
2025-06-09 07:30:00
683
原创 SpringBoot整合LDAP认证详解:从入门到实战
摘要:本文介绍了LDAP基础概念及其与SpringBoot的集成实现。LDAP是一种轻量级目录访问协议,采用树状结构组织数据。文章通过术语对照表和目录结构图直观讲解了DN、Entry等核心概念。详细展示了SpringBoot集成LDAP的环境配置步骤,包括依赖添加和连接参数设置。提供基础认证服务实现代码,涵盖用户认证和信息查询功能。最后介绍了与SpringSecurity的集成方案,为构建安全的LDAP认证系统提供完整实现路径。
2025-06-09 07:30:00
1248
原创 SpringBoot权限控制(RBAC)设计详解:从入门到精通
RBAC(基于角色的访问控制)是一种将权限与角色关联的权限管理模型。本文介绍了RBAC的核心概念、Spring Security集成和数据库设计。核心组件包括用户、角色、权限及其关联关系,模型分为基础RBAC、层级RBAC和约束RBAC。Spring Security集成部分涵盖依赖添加、基础配置和密码加密实现。数据库设计部分提供了用户、角色、权限等表结构及ER关系图,通过关联表实现RBAC模型。整套方案从理论到实践,为企业级权限系统提供了完整实现路径。
2025-06-08 07:30:00
938
原创 SpringBoot整合JWT实现无状态认证:入门到精通
JWT在SpringBoot中的实现与应用 摘要:本文介绍了JWT(JSON Web Token)的基本概念、与Session机制的对比,以及SpringBoot项目中JWT的整合实现。JWT由Header、Payload和Signature三部分组成,具有无状态、跨域支持等优势。文章详细展示了如何在SpringBoot项目中配置JWT环境,封装JWT工具类来实现Token的生成、解析和验证功能,包括密钥管理、自定义声明、签名验证等核心操作。通过对比表格和生活化比喻,帮助读者理解JWT与传统Session的
2025-06-08 07:30:00
890
原创 第十二天:Python字典(Dict)详解
字典(Dictionary)是Python中最强大的数据类型之一,它是一种可变的、无序的键值对(key-value)集合。字典中的元素是通过键(key)来存取的,而不是通过偏移量(如列表中的索引)。字典的核心特性包括:键值对结构:每个元素由一个键和一个值组成,中间用冒号(:)分隔无序性:字典中的元素没有固定的顺序(Python 3.7+版本中字典会保持插入顺序,但不应依赖此特性进行顺序操作)可变性:可以动态地添加、修改或删除键值对键的唯一性:字典中的键必须是唯一的,如果重复,后面的键值对会覆盖
2025-06-07 21:49:13
104
原创 第十一天:Python集合(Set)详解
集合(Set)是Python中的一种内置数据类型,用于存储无序的、唯一的元素集合。集合与列表(list)和元组(tuple)的主要区别在于:集合中的元素是无序的,不像列表那样有确定的顺序集合中的元素必须是唯一的,不允许重复集合中的元素必须是不可变的(可哈希的)类型集合在Python中用花括号{}表示,或者使用set()构造函数创建。集合在数学上类似于集合论中的集合概念,支持各种集合运算如并集、交集、差集等。
2025-06-07 21:42:21
179
原创 第十天:Python元组(Tuple)详解
元组是Python中不可变、有序的数据结构,适合存储不同类型的数据。创建元组有多种方式:圆括号直接创建、tuple()构造函数转换、单元素元组需加逗号等。元组的不可变性使其具有安全性、哈希性和高性能等特点,可作为字典键或函数返回值。虽然元组本身不可修改,但其包含的可变对象(如列表)仍然可以更改。这种特性使得元组在需要固定数据、多线程安全和字典键等场景中非常实用。
2025-06-07 21:41:05
118
原创 第九天:Python列表(List)详解
本文介绍了Python列表的基础知识和操作技巧。第一部分概述了列表的核心特性(有序、可变、可异构)和创建方法,包括直接定义、构造函数、推导式等。第二部分详细讲解了列表索引(正向/负向)和切片操作,展示了如何获取子列表及修改内容。文章还涵盖了切片赋值、多维列表处理等进阶技巧,并通过代码示例说明了列表的内存模型和操作注意事项。全文提供了丰富的代码演示,帮助读者全面掌握Python列表的使用方法。
2025-06-07 21:39:49
1
原创 SpringBoot密码加密与安全存储详解:从入门到精通
文章摘要:本文介绍了Spring Security中的密码加密技术,重点讲解了BCrypt算法的实现与应用。首先阐述了密码安全的基本概念和常见攻击方式,然后详细解析了Spring Security的PasswordEncoder接口和BCryptPasswordEncoder使用方法。文章还提供了在SpringBoot中配置密码加密的示例代码,以及用户注册和认证时的最佳实践。最后讨论了进阶密码安全策略,包括密码强度验证规则。这些技术可以有效保护用户密码安全,防止数据泄露带来的风险。
2025-06-07 07:30:00
718
原创 SpringBoot国密算法(SM2/SM3/SM4)详解:从入门到精通(含完整工具类)-全网最全
国密算法是由中国国家密码管理局制定的一系列密码算法标准,包括SM2(椭圆曲线公钥密码算法)、SM3(密码杂凑算法)和SM4(分组密码算法)等。这些算法是我国自主设计的商用密码算法体系,已广泛应用于金融、政务、通信等领域。与传统的国际通用算法相比,国密算法具有以下优势:1. 自主可控:完全由中国自主研发,避免了潜在的后门风险2. 安全性高:采用更先进的密码学设计理念3. 性能优越:在同等安全强度下,计算效率更高4. 符合监管要求:满足我国网络安全法和密码法要求
2025-06-07 07:30:00
1385
原创 OceanBase电商系统SQL设计:电商场景实践(实战篇)
OceanBase数据库在电商场景中的适配性分析与核心业务表设计优化 摘要:本文深入分析了原生分布式数据库OceanBase在电商系统中的适配性和优化实践。首先解析了OceanBase的分区架构、多副本机制等技术优势如何满足电商高并发、高可用需求。其次,针对电商业务特征,探讨了商品系统的范式与反范式平衡设计,包括结构化与非结构化数据的混合处理方案。最后提出了订单系统的分库分表策略,如按用户ID哈希分区的主订单表设计,以解决海量数据存储和高并发写入挑战。通过具体SQL示例展示了OceanBase在电商核心业务
2025-06-06 22:42:38
141
原创 OceanBase金融交易系统SQL - 金融场景实践深度解析(实战篇)
OceanBase作为一款原生分布式关系型数据库,其架构设计充分考虑了金融业务场景的特殊需求。以下是OceanBase的核心架构组件及其功能:| 组件名称 | 功能描述 | 金融场景价值 || ----------- | ---------------------------------- | -------------------------------- || RootService | 集群管理、
2025-06-06 22:40:45
119
原创 OceanBase地理空间数据处理:从原理到Java实践(专业篇)
地理信息系统(Geographic Information System, GIS)是一种用于采集、存储、处理、分析、管理和展示地理空间数据的计算机系统。在数据库领域,GIS功能通常通过空间数据类型和空间函数来实现。OceanBase作为一款分布式关系型数据库,从4.2版本开始全面支持MySQL模式下的空间数据处理功能。空间数据在OceanBase中主要分为以下几种类型:
2025-06-06 22:39:15
95
线性代数核心概念与技术在人工智能领域的应用解析
2025-05-27
Python网络爬虫Scrapy框架详解:架构、组件与实战应用
2025-05-27
【数据库技术】OceanBase分布式关系型数据库基础入门与核心功能详解:架构特性、安装配置、SQL语法及性能优化指南
2025-05-26
【数据库技术】MySQL基础入门篇:安装配置、SQL语法、数据类型、运算符、函数、表管理、约束、索引与视图详解
2025-05-26
Python简介与安装:Python跨平台安装详细指南
2025-05-26
Python开发环境配置与工具选择:涵盖解释器、IDE、虚拟环境及包管理的全面指南
2025-05-26
Java开发Java学习路线(进阶篇)最新版 200:涵盖JVM、并发编程、性能优化等200个高级主题的进阶学习路线全解析Java高级开发的
2025-05-26
Java编程Java学习路线(基础篇)最新版 200+:涵盖核心语法、面向对象、异常处理等基础知识体系构建
2025-05-26
Java基础到高级知识、面向对象等关键技术学习资料
2025-05-09
小恐龙公文助手1.0.8.3破解版.exe
2019-08-23
java web开发常用第三方控件以及jar包
2017-12-20
Redis.jar包
2018-08-08
Tomcat7.0.65-window64位
2018-06-14
Everything1.4.1.986.rar
2020-08-27
Linux基础详解
2018-08-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人