《动手学ROS2》10.5 配置Fishbot进行建图

《动手学ROS2》10.5 配置Fishbot进行建图

本系列教程作者:小鱼
公众号:鱼香ROS
QQ交流群:139707339
教学视频地址:小鱼的B站
完整文档地址:鱼香ROS官网
版权声明:如非允许禁止转载与商业用途。
公众号

10.5 配置Fishbot进行建图

上一节我们安装好了cartographer,这节课我们就开始配置cartographer进行建图。

我们需要创建一个功能包,将参数文件和Cartographer启动文件放到一起然后启动。

在这里插入图片描述

1.创建fishbot_cartographer

在src目录下,使用创建功能包指令,创建功能包

cd src
ros2 pkg create fishbot_cartographer

接着创建配置文件夹、launch文件夹和rviz配置文件夹。

cd fishbot_cartographer
mkdir config
mkdir launch
mkdir rviz

创建完成的功能包结构

.
├── CMakeLists.txt
├── config
├── launch
├── src
├── package.xml
└── rviz

2.添加cartographer配置文件

fishbot/config目录下创建fishbot_2d.lua文件。

接着我们来写一下配置文件,相较于默认的配置文件,主要修改以下内容(见注释)

include "map_builder.lua"
include "trajectory_builder.lua"

options = {
  map_builder = MAP_BUILDER,
  trajectory_builder = TRAJECTORY_BUILDER,
  map_frame = "map",
  tracking_frame = "base_link",
  -- base_link改为odom,发布map到odom之间的位姿态
  published_frame = "odom",
  odom_frame = "odom",
  -- true改为false,不用提供里程计数据
  provide_odom_frame = false,
  -- false改为true,仅发布2D位资
  publish_frame_projected_to_2d = true,
  -- false改为true,使用里程计数据
  use_odometry = true,
  use_nav_sat = false,
  use_landmarks = false,
  -- 0改为1,使用一个雷达
  num_laser_scans = 1,
  -- 1改为0,不使用多波雷达
  num_multi_echo_laser_scans = 0,
  -- 10改为1,1/1=1等于不分割
  num_subdivisions_per_laser_scan = 1,
  num_point_clouds = 0,
  lookup_transform_timeout_sec = 0.2,
  submap_publish_period_sec = 0.3,
  pose_publish_period_sec = 5e-3,
  trajectory_publish_period_sec = 30e-3,
  rangefinder_sampling_ratio = 1.,
  odometry_sampling_ratio = 1.,
  fixed_frame_pose_sampling_ratio = 1.,
  imu_sampling_ratio = 1.,
  landmarks_sampling_ratio = 1.,
}


-- false改为true,启动2D SLAM
MAP_BUILDER.use_trajectory_builder_2d = true

-- 0改成0.10,比机器人半径小的都忽略
TRAJECTORY_BUILDER_2D.min_range = 0.10
-- 30改成3.5,限制在雷达最大扫描范围内,越小一般越精确些
TRAJECTORY_BUILDER_2D.max_range = 3.5
-- 5改成3,传感器数据超出有效范围最大值
TRAJECTORY_BUILDER_2D.missing_data_ray_length = 3.
-- true改成false,不使用IMU数据,大家可以开启,然后对比下效果
TRAJECTORY_BUILDER_2D.use_imu_data = false
-- false改成true,使用实时回环检测来进行前端的扫描匹配
TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true 
-- 1.0改成0.1,提高对运动的敏感度
TRAJECTORY_BUILDER_2D.motion_filter.max_angle_radians = math.rad(0.1)

-- 0.55改成0.65,Fast csm的最低分数,高于此分数才进行优化。
POSE_GRAPH.constraint_builder.min_score = 0.65
--0.6改成0.7,全局定位最小分数,低于此分数则认为目前全局定位不准确
POSE_GRAPH.constraint_builder.global_localization_min_score = 0.7

-- 设置0可关闭全局SLAM
-- POSE_GRAPH.optimize_every_n_nodes = 0

return options

3.添加launch文件

3.1 launch需要包含的节点

要完成使用Cartographer进行建图,需要两个节点的参与,整个过程的计算流图如下:

/cartographer_node节点:

该节点从/scan和/odom话题接收数据进行计算,输出/submap_list数据.

该节点需要接收一个参数配置文件(第二部分写的那个)参数。

/occupancy_grid_node节点:

该节点接收/submap_list子图列表,然后将其拼接成map并发布

该节点需要配置地图分辨率和更新周期两个参数。

3.2 编写launch文件

在路径src/fishbot_cartographer/launch/下新建cartographer.launch.py文件,接着我们将上面两个节点加入到这个launch文件中。

我们在第二部分写的配置文件就是给cartographer_node节点的,可以通过这个节点启动参数configuration_directoryconfiguration_basename进行传递。

import os
from launch import LaunchDescription
from launch.substitutions import LaunchConfiguration
from launch_ros.actions import Node
from launch_ros.substitutions import FindPackageShare


def generate_launch_description():
    # 定位到功能包的地址
    pkg_share = FindPackageShare(package='fishbot_cartographer').find('fishbot_cartographer')
    
    #=====================运行节点需要的配置=======================================================================
    # 是否使用仿真时间,我们用gazebo,这里设置成true
    use_sim_time = LaunchConfiguration('use_sim_time', default='true')
    # 地图的分辨率
    resolution = LaunchConfiguration('resolution', default='0.05')
    # 地图的发布周期
    publish_period_sec = LaunchConfiguration('publish_period_sec', default='1.0')
    # 配置文件夹路径
    configuration_directory = LaunchConfiguration('configuration_directory',default= os.path.join(pkg_share, 'config') )
    # 配置文件
    configuration_basename = LaunchConfiguration('configuration_basename', default='fishbot_2d.lua')

    
    #=====================声明三个节点,cartographer/occupancy_grid_node/rviz_node=================================
    cartographer_node = Node(
        package='cartographer_ros',
        executable='cartographer_node',
        name='cartographer_node',
        output='screen',
        parameters=[{'use_sim_time': use_sim_time}],
        arguments=['-configuration_directory', configuration_directory,
                   '-configuration_basename', configuration_basename])

    occupancy_grid_node = Node(
        package='cartographer_ros',
        executable='occupancy_grid_node',
        name='occupancy_grid_node',
        output='screen',
        parameters=[{'use_sim_time': use_sim_time}],
        arguments=['-resolution', resolution, '-publish_period_sec', publish_period_sec])

    rviz_node = Node(
        package='rviz2',
        executable='rviz2',
        name='rviz2',
        # arguments=['-d', rviz_config_dir],
        parameters=[{'use_sim_time': use_sim_time}],
        output='screen')

    #===============================================定义启动文件========================================================
    ld = LaunchDescription()
    ld.add_action(cartographer_node)
    ld.add_action(occupancy_grid_node)
    ld.add_action(rviz_node)

    return ld

4.添加安装指令

做完上面的操作,我们还需要添加安装指令。

打开CmakeLists.txt,添加下面一条指令,将三个目录安装到install目录。

install(
  DIRECTORY config launch rviz
  DESTINATION share/${PROJECT_NAME}
)

5.开始建图

5.1编译启动

colcon build --packages-select fishbot_cartographer

启动建图前,需要先启动gazebo仿真环境,因为我们的建图程序依赖于Gazebo提供雷达和里程计等数据。

source install/setup.bash
ros2 launch fishbot_description gazebo.launch.py

source,启动建图

source install/setup.bash
ros2 launch fishbot_cartographer cartographer.launch.py

5.2修改配置

如果一切正常,你应该看到的是一个空空如也的RVIZ界面

在这里插入图片描述

不用担心,此时地图其实已经有了,我们需要添加一下地图相关的插件即可。

通过Add->By Topic添加组件。

在这里插入图片描述

最后通过左边的插件你应该可以看到图和机器人了。

在这里插入图片描述

5.3开始建图

打开我们机器人遥控节点,降低速度,控制机器人走一圈,看看地图的变化。

ros2 run teleop_twist_keyboard teleop_twist_keyboard

在这里插入图片描述

6.保存地图

走完一圈,没有黑影部分,我们就可以保存地图为一个本地文件了。我们需要使用一个叫做nav2_map_server的工具。

6.1 安装nav2_map_server

sudo apt install ros-foxy-nav2-map-server

6.2 保存地图

ros2 run nav2_map_server map_saver_cli --help

可以看到有下面的用法

Usage:
  map_saver_cli [arguments] [--ros-args ROS remapping args]

Arguments:
  -h/--help
  -t <map_topic>
  -f <mapname>
  --occ <threshold_occupied>
  --free <threshold_free>
  --fmt <image_format>
  --mode trinary(default)/scale/raw

NOTE: --ros-args should be passed at the end of command line

我们的地图话题为map,文件名字我们用fishbot_map,所以有下面这个这样写的命令行。

# 先将地图保存到src/fishbot_cartographer/map目录下
cd src/fishbot_cartographer/ && mkdir map && cd map
ros2 run nav2_map_server map_saver_cli -t map -f fishbot_map

接着我们就可以得到下面的两个文件

.
├── fishbot_map.pgm
└── fishbot_map.yaml

0 directories, 2 files

这两个文件就是对当前地图保存下来的文件,其中.pgm是地图的数据文件,.yaml后缀的是地图的描述文件。

下面的导航过程中我们将要使用到地图文件进行路径的搜索和规划。

7.总结

本节小鱼带你一起完成了Fishbot的Cartographer配置和建图,下一节小鱼会对地图是什么以及如何使用进行介绍,接着我们就可以配置Nav2进行Fishbot的导航了。


技术交流&&问题求助:

  • 微信公众号及交流群:鱼香ROS
  • 小鱼微信:AiIotRobot
  • QQ交流群:139707339
  • 版权保护:已加入“维权骑士”(rightknights.com)的版权保护计划
### 如何在ROS2中读取rosbag数据并进行 为了在ROS2环境中使用`rosbag`数据来进行同步定位与地(SLAM),通常涉及几个关键步骤。这不仅涉及到设置环境变量以便能够访问必要的软件包,还需要确保所使用的工具和库版本兼容。 对于配置环境而言,在`.bashrc`文件中添加特定路径至`ROS_PACKAGE_PATH`环境变量的做法适用于ROS1而非ROS2;然而概念相似,即确保所有依赖项都已正确定义[^1]。针对ROS2项目,则更多关注于工作空间的创及其内部结构的设计,比如通过源码安装像ORB-SLAM这样的算法框架时,需注意其适应性调整[^3]。 当处理具体任务——从`rosbag`读取传感器消息用于SLAM过程时,可以采用如下Python脚本作为起点: ```python import rclpy from rclpy.node import Node from nav_msgs.msg import Odometry from sensor_msgs.msg import Image, Imu import rosbag2_py as rb2p class RosBagReader(Node): def __init__(self): super().__init__('ros_bag_reader') self.publisher_ = self.create_publisher(Odometry, 'odom', 10) self.subscription_image = self.create_subscription( Image, '/camera/image_raw', self.listener_callback_img, 10) self.subscription_imu = self.create_subscription( Imu, '/imu/data', self.listener_callback_imu, 10) storage_options = rb2p.StorageOptions(uri='path_to_rosbag_file',storage_id='sqlite3') converter_options = rb2p.ConverterOptions(input_serialization_format='cdr', output_serialization_format='cdr') reader = rb2p.SequentialReader() reader.open(storage_options, converter_options) topic_types = reader.get_all_topics_and_types() while reader.has_next(): (topic, msgtype, msg, t) = reader.read_next() if topic == "/odom": odom_msg = Odometry.deserialize(msg) self.publisher_.publish(odom_msg) def main(args=None): rclpy.init(args=args) ros_bag_reader = RosBagReader() rclpy.spin(ros_bag_reader) ros_bag_reader.destroy_node() rclpy.shutdown() if __name__ == '__main__': main() ``` 上述代码展示了如何订阅来自`rosbag`的主题,并发布这些主题的消息给其他节点以供进一步处理。这里假设存在一个名为`/odom`的主题携带里程计信息,而实际应用可能需要根据具体情况修改此部分逻辑。此外,还需考虑IMU和其他传感器的数据融合策略,这对于提高姿态估计精度至关重要[^5]。 值得注意的是,如果遇到编译错误或第三方库找不到的情况,尝试检查CMakeLists.txt中的find_package指令参数是否合适,有时简单的改动可以帮助解决问题[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值