使用HashMap和双向链队列实现LRU算法

本文深入解析了LRU(最近最少使用)算法的核心思想与实现,采用HashMap与双向链队列结合的方式,阐述了缓存机制下数据的高效管理和访问策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、算法实现
import java.util.HashMap;

/**
 * LRU(Least Recently Used):最近最少使用
 * 核心思想:最近被访问的数据将来被访问的概率很大——FIFO思想的运用
 * 算法描述:(队列越靠近顶部数据越陈旧)
 * 1、缓存有余时:将数据直接放到队列底部
 * 2、缓存用完时:
 * 1)当缓存中存在待访问的数据时,将该数据移到缓存底部
 * 2)当缓存中不存在待访问的数据时,将队列顶部的数据移出,并将新数据插入到队列底部
 * <p>
 * 使用HashMap + 双向链队列实现LRU算法
 * 1、HashMap用来存储具体的缓存数据
 * 2、双向链表将HashMap中的数据以访问的时间顺序链接起来
 *
 * @author happy
 * @date 2019/11/21
 */
public class LruCache {
   
   
    /**
     * 缓存容量
     */
    private int capacity;
    /**
     * 以使用的缓存指针
     */
    private int used = 0;
    private HashMap<String, DLinkedNode> cache;
    /**
     * 双向队列的头尾指针
     */
    private DLinkedNode head, tail;

    public LruCache(int capacity) {
   
   
        this.capacity = capacity;
        cache = new HashMap<>(capacity);

        head = new DLinkedNode();
        tail = new DLinkedNode();

        // 初始化双向队列为空
        head.pre = null;
        head.next = tail;
        tail.pre = head;
        tail.next = null;
    }

    /**
     * 将数据添加到缓存中
     *
     * @param key   待缓存数据的键
     * @param v
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值