
无人驾驶路径规划
文章平均质量分 94
无人驾驶路径规划
残随
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[PathPlanning]State Lattice Planner
StateLatticePlanner核心思路是先采样生成状态栅格地图,最后利用search方法生成自车运行轨迹。StateLattice和Grids的主要区别是栅格节点包含自车的状态信息,借用维基百科对lattice graph的定义:A, orRnStateLattices考虑到每个顶点机器人的动力学模型,用来生成采样点之间的可行路径,而Grids只是简单的对空间维度进行等间距离散采样,由此采样得到的路径可能不符合机器人的运动模型。原创 2023-03-04 11:33:59 · 869 阅读 · 0 评论 -
[PathPlanning]D*
本文详细介绍了D*算法原理,它是一种动态搜索路径的算法。D*算法主要解决位置地形条件下路径重新规划(replan)问题,当移动机器人碰到障碍时候通过局部修正快速得到最优的路径规划。相比于重新利用Dijkstra或者A*做为Replanner,D*对运行时间的优化随着随着搜索搜索空间增长有着显著的优化。原创 2023-02-18 23:20:08 · 661 阅读 · 0 评论 -
[PathPlanning]Hybrid A*
HybridAStar算法主要是在A*基础上考虑车辆动力学相关的搜索算法,其放弃了A*中对搜索空间离散化,利用Dubins或者Reeps-Shepp来考虑自车能够前进的位置,使得规划的轨迹满足车辆的非完整性约束,但是该Hybrid A*牺牲了算法的完备性和最优性。Hybrid A*算法主要包括(1)在连续空间上扩张节点搜索最短路径,(3)路径平滑。Hybrid A*算法与A*算法的差异对比如下表所示A*Hybrid A*离散方法(Discrete method)原创 2023-02-15 23:19:22 · 1161 阅读 · 0 评论