- 博客(1211)
- 收藏
- 关注

原创 后退N帧协议总结
1)后退N帧只是用一个计时器,当这个计时器超时时,则会重传超时报文之后 的全部报文。2)后退N帧的发送窗口大小应该小于2^m。这种原因要分两种情况讨论:假设接收端所期望接受的豹纹的序列号为n,一种情况为:发送端还没发送能发送这个n,而是发送窗口刚好处于n的左边,那么这种情况说明发送端处于阻塞状态,并且窗口的所有分组都需要等待确认,假设这个窗口的大小刚好等于2^m,那么发送窗口的第一个报
2016-04-22 20:58:17
11914
4
原创 !LangChain代理决策架构与源码深度剖析(75)
LangChain代理的决策架构是其智能交互的核心,主要由六大组件构成。这些组件通过协同工作,实现从用户输入解析到最终结果输出的完整决策流程。在LangChain源码中,这些核心组件分别对应不同的类与模块。大语言模型接口定义在文件中,其抽象基类LLM工具集的实现则分布在目录下,每个工具类继承自BaseTool,并实现具体的run方法。提示模板通过模块管理,
2025-07-18 18:00:00
244
原创 !LangChain文本分割算法(78)
在自然语言处理任务中,处理长文本时,由于模型输入长度的限制,或者为了提高处理效率、增强语义理解,通常需要将长文本分割成合适长度的文本块。LangChain作为构建语言模型应用的框架,提供了多种文本分割算法,以满足不同场景需求。这些算法通过合理的策略划分文本,确保分割后的文本块既能保留语义完整性,又能适配下游任务。接下来,我们从源码角度深入剖析LangChain文本分割算法的具体实现。
2025-07-17 23:45:00
454
原创 !LangChain文档加载器的接口设计与多种格式解析源码深度解析(77)
LangChain文档加载器的基础接口定义在BaseLoader抽象类中,该类位于模块。BaseLoaderload方法:作为加载文档的入口,负责从指定数据源读取内容,并将其转换为Document对象列表。该方法无参数,子类需根据具体数据源实现内部逻辑。lazy_load方法:提供延迟加载功能,返回一个生成器(generator),允许用户按需迭代加载文档,避免一次性将大量数据读入内存,适用于处理超大规模文档。"""抽象方法,需由子类实现文档加载逻辑"""pass。
2025-07-17 21:00:00
363
原创 !LangChain代理工具选择与调用的源码实现机制深度剖析(76)
LangChain通过BaseTool"""基础工具接口"""name: str # 工具名称,用于唯一标识description: str # 工具功能描述,辅助代理理解工具用途return_direct: bool = False # 是否直接返回工具结果,不经过代理二次处理"""工具核心执行方法,接收输入并返回结果"""pass"""异步执行方法,可选实现,用于支持异步调用"""raise NotImplementedError("异步方法未实现")_run。
2025-07-17 19:00:00
442
原创 !LangChain记忆组件源码实现对比分析(74)
一些记忆组件支持自动生成历史摘要,减少记忆占用的同时保留关键信息。"""支持历史摘要的记忆组件"""self.base_memory = base_memory # 基础记忆组件self.llm = llm or OpenAI() # 用于生成摘要的语言模型self.summary_token_limit = summary_token_limit # 摘要的最大token数self.summary = "" # 当前摘要@property"""返回记忆变量名称"""
2025-07-17 17:00:00
507
原创 !LangChain记忆(Memory)模块的数据结构与存取逻辑深度解析(73)
在LangChain框架中,记忆(Memory)模块是实现上下文感知和对话连续性的关键组件。它允许模型在多轮交互中保留历史信息,使得后续的响应能够基于之前的对话内容进行推理和生成。例如在智能客服场景中,记忆模块可记录用户之前咨询的问题和解决方案,当用户再次提问时,模型能够结合历史信息提供更精准的回答;在代码生成助手场景下,记忆模块能保存用户之前输入的代码需求和生成结果,辅助生成更符合预期的新代码。通过这种方式,记忆模块显著增强了LangChain应用的交互体验和任务处理能力。
2025-07-17 16:00:00
716
原创 !LangChain顺序链、分支链等特殊链的实现原理深入解析(72)
顺序链在LangChain中由"""顺序链核心类,继承自Chain基类"""chains: List[Chain] # 存储子链的列表,包含多个具体执行任务的子链input_variables: List[str] # 顺序链整体的输入变量列表output_variables: List[str] # 顺序链整体的输出变量列表memory: Optional[BaseMemory] = None # 可选的内存对象,用于存储中间状态。
2025-07-17 15:00:00
674
原创 !LangChain链(Chain)的执行流程与核心源码解读(71)
输入准备:接收用户输入,进行必要的预处理和验证。提示生成:根据输入和预定义的提示模板,生成输入给语言模型的提示文本。模型调用:将生成的提示传递给语言模型,获取模型输出。输出解析:解析模型输出,提取有用信息并转换为结构化格式。结果处理:对解析后的结果进行后处理,可能包括调用其他工具或子链。输出返回:将最终结果返回给用户。# 创建文本分割器# 创建摘要链OpenAI(),# 创建完整的摘要生成链# 分割文本# 生成摘要# 使用示例。
2025-07-17 14:00:00
1257
原创 !LangChain输出解析器的架构设计与源码分析(70)
langchain/output_parsers/base.py(简化)"""所有输出解析器的抽象基类""""""将文本解析为结构化数据的抽象方法""""""返回解析格式说明,用于提示词模板"""return ""parse方法是解析器的核心逻辑入口,负责将输入文本转换为目标格式;方法用于生成提示词模板中的解析指令,引导LLM输出符合预期格式的内容。# langchain/output_parsers/custom_grammar.py(简化)
2025-07-17 13:00:00
447
原创 !LangChain提示词模板引擎底层实现逻辑深度解析(69)
LangChain提示词模板基于Python类实现,核心类为。根据以下信息回答问题:{context}问题:{question}"""input_variables=["context", "question"], # 定义模板中使用的变量名template=template # 具体的模板文本在这个示例中,指定了模板中需要填充的变量,template则是包含占位符(如{context}和{question})的文本。这种结构将变量定义与模板内容分离,使得模板的维护和修改更加清晰。
2025-07-17 12:00:00
402
原创 !LangChain大语言模型接口层源码与调用机制深度解析(68)
LangChain通过LLM抽象基类定义大语言模型的标准接口,位于"""核心调用方法,子类需实现具体调用逻辑"""pass@property"""返回模型类型标识"""pass"""对外暴露的调用接口,调用子类实现的_call方法"""_call:核心调用逻辑,接收提示词和停止序列,返回模型生成结果_llm_type:返回模型类型字符串标识AsyncLLMAsyncLLM"""核心异步调用方法,子类需实现具体异步调用逻辑"""pass@property。
2025-07-17 11:00:00
501
原创 !LangChain异步编程的应用与源码解析(67)
LangChain为了实现统一的异步操作体验,定义了一系列异步接口规范。在核心组件如LLM(大语言模型)、Embeddings(嵌入模型)、(向量数据库)等类中,都设计了对应的异步方法。这些接口遵循Python异步编程的语法规范,使用async关键字定义,确保开发者可以以一致的方式进行异步操作。例如在LLM抽象类中,除了同步的predict方法,还定义了apredict异步预测方法,为具体的语言模型实现提供统一的异步交互入口。"""同步预测方法"""pass"""异步预测方法"""pass。
2025-07-17 10:00:00
540
原创 !LangChain基础抽象类与接口的设计思想及实现源码级分析(66)
接口隔离原则:将大接口拆分为小接口,如BaseLLM仅负责文本生成,不涉及记忆或嵌入。依赖倒置原则:高层模块依赖抽象接口而非具体实现,如依赖BaseLLM和BaseMemory接口。里氏替换原则:子类可替换父类而不影响程序逻辑,如任何的子类可用于向量数据库。开放-封闭原则:对扩展开放,对修改封闭,如通过新增方法而非修改现有方法扩展接口。
2025-07-17 09:00:00
955
原创 !LangChain项目结构与核心模块源码深度剖析(65)
LangChain作为构建端到端LLM应用的开发框架,其项目结构设计遵循模块化、可扩展的原则。整个项目通过清晰的目录划分,将不同功能模块解耦,既保证了核心功能的独立性,又通过接口设计实现模块间的高效协同。其核心代码库主要包含基础工具、模型集成、记忆管理、文本处理等关键模块,这些模块共同构成了LangChain强大的应用开发能力。从顶层目录结构来看,LangChain的核心代码位于langchain主目录下,该目录下包含多个子模块,每个子模块对应不同的功能领域。
2025-07-17 08:00:00
510
原创 !LangChain回调系统(64)
LangChain作为一个强大的语言模型应用框架,回调系统是其核心组件之一。回调系统允许开发者在应用执行的不同阶段插入自定义逻辑,从而实现监控、日志记录、流式输出、可视化等功能。本章将深入探讨LangChain回调系统的基本概念、设计目标和核心组件。
2025-07-17 07:00:00
542
原创 !LangChain基于回调的自动化测试概述(63)
LangChain作为一个构建复杂语言模型应用的框架,其组件之间的交互和依赖关系日益复杂。自动化测试在保证框架稳定性、提高开发效率和确保功能正确性方面扮演着至关重要的角色。通过自动化测试,可以快速发现代码变更引入的问题,验证新功能的正确性,以及确保框架在不同环境下的一致性。在LangChain中,自动化测试不仅能够验证单个组件的功能,还能测试组件之间的集成情况,以及整个应用的端到端流程。特别是在使用回调机制时,自动化测试能够捕捉回调函数的执行顺序、参数传递和状态变化,确保回调机制按预期工作。
2025-07-07 23:45:00
507
原创 !LangChain调试信息的收集与分析深度解析(62)
LangChain调试信息是指在框架运行过程中产生的,用于定位问题、分析执行逻辑、优化性能的各类数据。这些信息涵盖了从用户输入到最终输出全流程的关键节点数据,包括但不限于提示模板的构建细节、大语言模型的交互内容、工具调用的参数与结果、链执行的中间状态等。其核心作用在于帮助开发者快速定位程序中的错误、理解复杂的执行逻辑、优化模型调用与工具使用策略,是保障LangChain应用稳定运行与高效迭代的重要依据。
2025-07-07 21:30:00
1489
原创 !LangChain异步回调与非阻塞处理深度剖析(60)
在计算机编程领域,同步与异步、阻塞与非阻塞是描述任务执行方式的重要概念。同步操作指程序按照顺序依次执行任务,前一个任务完成后才会开始下一个任务;而异步操作允许程序在一个任务未完成时,继续执行其他任务。阻塞操作会使当前线程暂停执行,直到操作完成;非阻塞操作则不会阻塞线程,线程可以在操作执行过程中去处理其他事务。而异步非阻塞的网络请求可以使用aiohttp在LangChain中,引入异步回调与非阻塞处理能够显著提升程序的执行效率和响应能力,特别是在处理I/O密集型任务(如API调用、文件读写)时优势明显。
2025-07-07 18:00:00
1475
原创 !LangChain日志记录与性能监控深度解析(59)
DEBUG:用于记录详细的调试信息,通常在开发和问题排查阶段使用。INFO:记录系统运行的正常信息,如请求接收、工具调用开始等。WARNING:标记可能存在问题或需要关注的情况,如配置异常、资源接近耗尽等。ERROR:记录发生的错误信息,如工具调用失败、模型响应错误等。CRITICAL:表示严重的错误,可能导致系统无法正常运行,如系统崩溃、数据丢失等。自定义日志处理器:继承类,实现自定义的日志输出方式,如发送日志到远程服务器。新增监控指标:编写自定义的指标采集函数,扩展系统的监控范围。
2025-07-07 17:00:00
876
原创 !LangChain自定义回调开发与集成深度解析(58)
继承基类:创建新类继承,获取基础回调方法接口。实现回调方法:根据需求,在新类中重写的一个或多个回调方法,编写具体的业务逻辑。参数处理:在回调方法中,合理处理传入的参数(如serializedpromptsoutputs等),这些参数包含了触发点的关键信息。测试与集成:将自定义回调处理器实例化后,注册到中,测试其在实际场景中的运行效果。
2025-07-07 16:00:00
504
原创 !LangChain回调处理器的事件监听机制深入解析(57)
LangChain中的回调处理器(Callback Handler)是一种用于监听和响应框架内各类事件的机制。它允许开发者在关键事件发生时插入自定义逻辑,实现对流程的监控、日志记录、状态追踪等功能。从本质上讲,回调处理器通过事件监听机制,将LangChain的运行过程与外部自定义操作进行解耦,使得框架在保持核心功能稳定的同时,具备高度的可扩展性和灵活性。在实际应用场景中,回调处理器发挥着至关重要的作用。例如,在构建智能问答系统时,通过回调处理器可以记录每次与语言模型交互的请求和响应,便于后续进行性能分析和错
2025-07-07 15:00:00
674
原创 ! LangChain文档处理的批量化与并行化深入解析(56)
通过遵循这些最佳实践,可以充分发挥LangChain文档处理批量化与并行化的优势,高效处理大规模文档数据,为各类应用提供强大支持。
2025-07-07 14:00:00
852
原创 !LangChain长文档处理的挑战与方案剖析(55)
简单滑动窗口摘要# 调用LLM生成窗口内摘要# 合并局部摘要prompt = f"请总结以下内容:\n# 简单滑动窗口摘要 class SlidingWindowSummarizer : def __init__(self , window_size : int = 1000 , step_size : int = 500) : self . window_size = window_size。
2025-07-07 13:00:00
777
原创 !LangChain检索增强生成(RAG)原理深度剖析(54)
检索增强生成(Retrieval-Augmented Generation,简称RAG)是一种将信息检索技术与语言生成模型相结合的方法,旨在解决大语言模型(LLM)在回答问题时依赖预训练知识的局限性。传统LLM的知识仅来源于训练数据,难以实时更新或处理特定领域的专业知识,而RAG通过动态检索外部知识库,为LLM提供最新、准确的上下文信息,从而生成更可靠的答案。在LangChain框架中,RAG被设计为核心组件之一,通过标准化接口实现与不同类型的语言模型、向量数据库和检索工具的集成。
2025-07-07 12:00:00
473
原创 !LangChain相似度搜索算法深度解析(53)
在LangChain框架中,相似度搜索算法是实现智能问答、对话上下文理解的核心模块。它负责从海量的文本数据(如历史对话、知识库文档)中,找出与用户输入语义最相近的内容,为后续的语言模型生成回复提供关键参考信息。例如,在智能客服场景中,用户提问“如何重置密码”,相似度搜索算法会从客服知识库中检索出最相关的“密码重置指南”文档段落,结合这些内容调用语言模型生成准确回复。若无高效的相似度搜索,模型可能无法关联到正确知识,导致回答偏离主题或不准确。
2025-07-07 11:00:00
529
原创 ! LangChain向量数据库集成与操作源码分析(52)
在LangChain中,接口定义了与向量数据库交互的统一方式。这一接口定义在文件中,为所有具体的向量数据库实现提供了标准的方法集。"""向量数据库的基类,定义了与向量数据库交互的接口"""self,"""将文本添加到向量数据库中,并返回文档ID列表"""passself,"""执行相似度搜索,返回最相似的k个文档"""passcls,"""从文本列表创建向量数据库实例"""passadd_texts:将文本添加到向量数据库中,并返回文档ID列表。可以选择性地为每个文本添加元数据。
2025-07-07 10:00:00
744
原创 ! LangChain嵌入模型的选择与应用源码级分析(51)
LangChain中所有嵌入模型的基类是,它定义了嵌入模型必须实现的接口方法。"""所有嵌入模型的基类""""""将文档列表转换为嵌入向量列表参数:texts: 输入的文本列表返回:每个文本对应的嵌入向量列表,每个向量是浮点数列表"""pass"""将单个查询文本转换为嵌入向量参数:text: 输入的单个文本返回:对应的嵌入向量,是浮点数列表"""pass从代码可知,强制要求子类实现和方法,分别用于处理批量文本和单个文本的嵌入生成。
2025-07-07 09:00:00
951
原创 !LangChain文本分割策略与参数优化深度剖析(50)
除了内置的分割器,开发者还可以通过继承基类来自定义分割策略。else:else:"""合并分割后的子文本"""else:else:实现split_text方法:根据业务需求定义独特的分割逻辑复用基类方法:合理使用等基类方法进行结果优化参数配置:通过初始化参数灵活控制分割粒度和重叠量这种扩展性设计使得LangChain能够适应各种复杂的文本处理场景。
2025-07-07 08:00:00
963
原创 !LangChain文档加载器概述(49)
LangChain作为一个强大的语言模型应用框架,文档加载器是其核心组件之一。文档加载器负责从各种来源获取数据,并将其转换为LangChain可以处理的格式。本章将深入探讨LangChain文档加载器的基本概念、设计目标和核心组件。文档加载器是LangChain中用于从不同数据源获取文本数据的组件。这些数据源可以是文件系统、网页、数据库、云存储等。文档加载器的主要作用是将各种格式的数据转换为统一的Document对象,以便后续处理。Document对象是LangChain中的基本数据结构,它包含两个主要属性
2025-07-07 07:00:00
666
原创 !LangChain代理(48)
LangChain代理是框架中实现复杂任务自动化执行的核心组件,它允许大语言模型(LLM)通过调用外部工具和服务来扩展自身能力。与传统的LLM应用不同,代理能够自主决策何时以及如何使用工具,从而完成更复杂的任务。本章将深入探讨LangChain代理的基本概念、核心作用以及在实际应用中的重要性。
2025-07-05 23:45:00
877
原创 !LangChain代理的可解释性与透明度深度解析(47)
LangChain代理(Agent)是LangChain框架中用于自动化执行任务的核心组件,它通过动态调用工具(如搜索引擎、计算器、文件操作工具等),结合大语言模型的推理能力,实现复杂任务的处理。与普通链(Chain)不同,代理能够根据当前任务状态自主决定下一步操作,具有更强的灵活性和智能性。从功能上看,代理主要完成三个核心任务:任务理解与规划,根据用户输入确定需要执行的操作序列;工具调用与执行,选择合适的工具并获取结果;结果整合与反馈,将工具返回的结果与语言模型的推理相结合,生成最终答案。
2025-07-05 21:00:00
866
原创 !LangChain处理代理错误与重试机制的源码级深度剖析(46)
LangChain通过自定义异常类来区分不同类型的错误,便于针对性处理。基础异常类"""LangChain基础异常类,所有LangChain特定异常的基类"""pass在此基础上,衍生出各类具体异常。例如,"""与大语言模型相关的异常"""pass"""工具执行过程中抛出的异常"""pass这些明确的异常定义,为后续的错误捕获和处理提供了清晰的分类依据。LangChain通过"""基础重试策略接口""""""判断是否应该重试。:param error: 捕获到的异常对象。
2025-07-05 19:00:00
696
原创 !LangChain代理的规划与执行循环深度剖析(45)
LangChain代理的核心功能实现依赖于多个基础组件协同工作,这些组件共同构成了代理运行的基础架构。其核心组件包括。从源码层面来看,LangChain库中代理相关的核心类定义在包下。工具集则是代理与外部世界交互的桥梁,每个工具都定义了具体的功能和调用方式。
2025-07-05 18:00:00
536
原创 !LangChain自定义代理开发深度解析(44)
继承Agent基类:实现核心决策方法定义工具接口:指定代理可调用的工具集合实现提示逻辑:构建符合代理策略的LLM提示状态管理:维护对话历史和中间结果注册代理:将自定义代理添加到LangChain注册表自定义工具需实现Tool类或继承BaseTool"""自定义工具示例"""name: str = "custom_tool" # 工具名称description: str = "用于执行自定义任务的工具" # 工具描述"""同步执行工具"""# 自定义工具逻辑。
2025-07-05 17:00:00
875
原创 !LangChain内置代理类型深度对比分析(43)
在LangChain框架体系里,代理(Agent)扮演着智能任务执行者的关键角色。它区别于普通的链式结构,能够依据任务需求,动态调用不同工具(Tool)、结合语言模型的推理能力,自主规划执行步骤并完成复杂任务。无论是智能问答、代码生成,还是数据分析等场景,代理都可通过灵活组合工具与推理逻辑,将用户输入转化为有效输出。以智能客服场景为例,代理可调用知识库检索工具获取信息,再借助语言模型组织回复话术,高效解决用户问题。
2025-07-05 16:00:00
4094
原创 !LangChain工具选择与调用策略深入解析(42)
BaseTool类:所有工具的基类,定义了工具的基本属性和方法,如name(工具名称)、(工具描述)、run(执行方法)。name: str # 工具名称description: str # 工具描述"""执行工具的抽象方法,需由子类实现"""pass类:负责工具选择的逻辑,包含根据任务描述匹配工具的核心方法。# 工具选择逻辑实现passAgent类:智能代理,集成工具选择和调用逻辑,可动态决策工具使用。
2025-07-05 15:00:00
576
原创 ! LangChain工具选择与调用策略深入解析(41)
BaseTool类:所有工具的基类,定义了工具的基本属性和方法,如name(工具名称)、(工具描述)、run(执行方法)。name: str # 工具名称description: str # 工具描述"""执行工具的抽象方法,需由子类实现"""pass类:负责工具选择的逻辑,包含根据任务描述匹配工具的核心方法。# 工具选择逻辑实现passAgent类:智能代理,集成工具选择和调用逻辑,可动态决策工具使用。
2025-07-05 14:00:00
937
原创 ! LangChain记忆对模型性能的影响评估(40)
BaseMemory# langchain/memory/base.py(简化)"""所有记忆类的抽象基类"""@property"""返回记忆相关的变量名列表,用于标识记忆数据"""pass"""从记忆存储中加载数据,根据输入动态筛选相关记忆"""pass"""保存当前交互的上下文信息到记忆存储"""pass定义了记忆数据在链输入输出中的键名;负责从存储中提取与当前任务相关的历史数据;则将新产生的交互信息存入记忆。
2025-07-05 13:00:00
1339
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人