- 博客(484)
- 收藏
- 关注
原创 认识下计算机视觉中的人脸识别
人脸识别技术已取得显著进展,但其应用需平衡技术能力与伦理责任。未来,随着算法优化、硬件升级和法规完善,人脸识别将在更多领域发挥作用,同时也需要社会共同努力确保其合法、公正地使用。
2025-07-14 17:25:58
627
原创 使用Tensorflow和CNN进行猫狗图片训练的实战总结
依赖关系:现代图像识别系统(尤其是高精度系统)几乎都以 CNN 为基础架构,没有 CNN,就没有当前图像识别的实用化水平。本质作用:CNN 通过卷积、池化等操作,将高维度、强关联的图像数据转化为可用于分类 / 识别的抽象特征,让计算机能高效 “理解” 图像的语义信息。简单来说:图像识别是目标,CNN 是实现这一目标的最有效工具。
2025-07-10 19:45:49
681
2
原创 Tensorflow的安装记录
CUDA (Compute Unified Device Architecture)是一套软硬件结合的解决方案,包括硬件架构(GPU 中的计算核心)和软件编程模型(API、工具链、库),旨在让开发者用类似 C/C++ 等主流语言编写并行计算程序,而非仅用于图形渲染。注意,这里说的不是哪个几点几的小版本号,而是Tensorflow分为两大类版本,CPU版本和GPU版本,它们在安装方式、依赖和性能上有明显区别。安装后建议通过示例代码验证环境,确保模型能正常训练和推理。同样,安装完成后可以在Python中导入。
2025-07-09 11:44:47
1091
原创 图像识别之图像的卷积
在图像处理中,卷积是一种重要的特征提取和处理手段。图像是一个二维的像素矩阵,卷积核(也叫滤波器)是一个小的二维矩阵。对图像进行卷积运算时,卷积核在图像上滑动,在每个位置,将卷积核与图像对应区域的像素值进行元素相乘,然后将结果相加,得到卷积后的输出像素值。作用:不同的卷积核可以实现不同的图像处理效果,比如使用高斯卷积核进行卷积运算,可以对图像进行平滑处理,减少噪声;使用边缘检测卷积核(如 Sobel 算子、Canny 算子),可以检测出图像中的边缘信息,突出物体的轮廓。
2025-07-08 18:03:46
588
原创 深度学习之迁移学习
迁移学习通过 “知识复用” 打破了传统机器学习 “每个任务孤立训练” 的限制,尤其适合数据有限或计算资源受限的场景。从预训练模型微调(如 BERT、GPT)到跨领域知识迁移,它已成为现代 AI 的核心技术之一,推动了医疗、自动驾驶、NLP 等领域的快速发展。未来,随着多模态预训练模型(如 CLIP、GPT-4)的兴起,迁移学习的应用范围将进一步扩大。
2025-07-08 07:48:22
605
原创 认识神经网络和深度学习
神经网络(Neural Network)是一种模仿生物神经系统(如大脑神经元连接方式)设计的计算模型,通过多层 “人工神经元” 的互联,实现对数据的非线性关系建模,是机器学习和人工智能的核心技术之一。其核心能力是从数据中自动学习规律(如分类、预测、特征提取),无需人工编写具体规则。一、神经网络的基本结构神经网络由多个 “层” 组成,每层包含若干 “神经元”(Neuron),神经元之间通过 “权重”(Weight)连接,形成类似生物神经网络的信号传递路径。
2025-07-08 07:43:17
691
原创 机器学习:无监督学习之聚类
Kmeans(K - 均值聚类)是机器学习中最经典的无监督学习算法之一,用于将无标签数据自动划分为 K 个不同的簇(类别)。核心思想:假设数据由 K 个高斯分布混合生成,通过 EM 算法估计每个分布的参数(均值、协方差),样本属于概率最高的分布对应的簇。核心思想:DBSCAN 的改进,通过计算 “可达距离” 生成聚类顺序图,可在不同密度下识别簇,减少对参数的依赖。“均值” 的含义: 每个簇的中心是该簇所有样本在特征空间中的平均值(例如二维空间中,质心是所有点的坐标平均值)。
2025-07-08 07:33:46
845
原创 机器学习:更多分类回归算法之决策树、SVM、KNN
决策树是一种强大且直观的机器学习算法,适合处理非线性关系和需要可解释性的场景。虽然它存在过拟合风险,但通过剪枝、集成学习等优化手段,决策树在实际应用中仍然表现出色,尤其是作为集成模型(如随机森林)的基础组件。
2025-07-08 07:28:52
1398
原创 机器学习之逻辑回归
逻辑回归(Logistic Regression)是一种用于解决分类问题的统计学习方法,尽管名称中带有 “回归”,但它本质上是一种分类算法,尤其适用于二分类问题(即结果只有两种可能,如 “是 / 否”“正 / 负”)。核心思想逻辑回归的核心是通过Sigmoid 函数(也称为 Logistic 函数)将线性回归的输出(连续值)映射到 [0,1] 区间,从而表示 “属于某一类别的概率”。与线性回归的区别适用场景。
2025-07-08 07:19:45
444
原创 CMake之CMakeLists.txt语法规则
而第三个参数则是一个数学运算表达式,支持的运算符包括:+(加)、-(减)、*(乘)、/(除)、%(求余)、|(按位或)、&(按位与)、^(按位异或)、~(按位取反)、<<(左移)、>>(右移)以及这些运算符的组合运算,它们的含义与 C 语言中相同。需要注意的是,源文件路径既可以使用相对路径、也可以使用绝对路径,相对路径被解释为相对于当前源码路径(注意,这里源码指的是 CMakeLists.txt 文件,因为 CMakeLists.txt 被称为 cmake 的源码,若无特别说明,后续将沿用这个概念!
2025-07-03 21:50:44
721
原创 Cmake简介与基本使用概述
大都数的 IDE 都有这个工具,譬如 Visual C++的 nmake、linux 下的 GNU make、Qt 的 qmake 等等,这些 make 工具遵循着不同的规范和标准,对应的 Makefile 文件其语法、格式也不相同,这样就带来了一个严峻的问题:如果软件想跨平台,必须要保证能够在不同平台下编译,而如果使用上面的 make 工具,就得为每一种标准写一次 Makefile,这将是一件让人抓狂的工作。还好每一个都不复杂!所以,意味着最终生成的库文件对应的名字会自动添加上前缀和后缀。
2025-07-03 21:48:24
833
原创 windows下安装和使用git
对于绝大多数用户日常使用的桌面电脑(Windows PC、传统 x86 架构的 Mac 等),x64 是当前的主流架构。只有少数特殊设备(如苹果 M 系列 Mac、部分 ARM 架构的轻薄本)采用其他架构,但整体占比不高。
2025-07-03 11:24:46
761
原创 在开发板I.MX6U上进行QT开发
选择 fsl-imx-x11-qt5 工具链:若开发 i.MX 平台的 Qt 应用,特别是需要硬件加速或 X11/Wayland 支持。选择 arm-linux-gnueabihf-g++:若开发简单 ARM 程序,或需自行控制所有依赖的编译过程。关键点:fsl 工具链是为 i.MX 平台深度定制的 “一站式” 解决方案,而。
2025-07-03 07:58:11
838
原创 QT常用类和模块
Qt 对数据库的基本操作流程大概是这样子,当然 Qt 提供了很多操作数据库的类,我们只讲解基本的与常用的就已经足够了。Qt SQL 模块里包含了很多个类,可以轻松实现数据库的连接、执行 SQL 语句,获取数据库里的数据与界面显示等功能,一般数据与界面之间会采用 Model/View架构,从而很方便的显示数据界面和操作数据库。绘图和图表的内容本章主要介绍绘图和图表的基本操作,以简单的例子呈现绘图与图表的用法,目的就是快速入门绘图与图表,关于绘图与图表详解最好是看 Qt 官方的帮助文档。
2025-07-03 07:44:33
696
原创 QT入门基础知识总结
Qt 是原生应用开发框架,通过 C++ 直接操作操作系统和硬件,适合高性能、深度定制的界面;前端是Web 生态的界面层,依赖浏览器或容器,适合快速迭代、跨平台部署的轻量级应用。二者虽都涉及界面交互,但技术路径和适用场景截然不同,选择取决于具体需求:若需开发桌面软件、嵌入式系统或高性能应用,选 Qt;若需开发网站、小程序或跨平台 Web 应用,选前端技术栈。
2025-07-03 07:15:02
654
原创 认识OpenCV视觉处理库
OpenCV(Open Source Computer Vision Library)是一个广泛用于计算机视觉任务的开源库,其核心代码主要使用 C++ 编写,同时提供了多种语言的接口。一、OpenCV 的底层语言:C++性能优先:C++ 是一种高性能语言,适合处理计算机视觉中的大量计算任务(如图像滤波、特征提取、深度学习推理等)。跨平台支持:C++ 代码可在 Windows、Linux、macOS、Android、iOS 等多种操作系统上编译运行。API 基础:OpenCV 的原生 API(如。
2025-06-24 17:22:36
629
原创 认识NumPy/Scipy/Pandas/Matplotlib这几个Python库
数据清洗(Data Cleaning) 是数据分析与机器学习流程中的关键步骤,指的是识别并纠正(或删除)数据集中的不准确、不完整、不一致或重复信息的过程。通俗来说,就是把 “脏数据” 变成 “干净数据”,为后续分析和建模打下基础。
2025-06-24 17:21:50
1054
原创 图像和视频处理基础知识总结
自然光线(含RGB三色) → 拜耳滤镜选择性过滤(仅允许单一颜色透过) → 感光二极管感知光强并产生电荷 → ADC转换为数字信号(单一颜色的强度值) → 插值算法根据相邻像素估算缺失色彩 → 合成完整RGB像素 → 色彩校正(白平衡、伽马变换等)→ 最终彩色图像核心结论:感光单元与光电效应是色彩记录的基础,但仅能提供单通道光强信号;色彩信息的完整记录依赖滤光片的分光作用和后期插值算法,二者缺一不可。
2025-06-19 11:04:51
799
原创 RV1126开发之基础知识总结
MIPI 摄像头凭借高速、低功耗和抗干扰的特性,成为移动设备和嵌入式场景的主流选择;而其他接口(如 USB、GigE Vision、Camera Link 等)则根据传输距离、带宽需求、成本和应用场景的不同,在工业、医疗、消费电子等领域发挥作用。选择摄像头接口时,需结合设备尺寸、画质要求、传输距离和系统兼容性综合考量。
2025-06-19 11:04:20
1105
原创 AI应用:计算机视觉相关技术总结
计算机视觉通过融合传统算法与深度学习,从基础的图像特征提取发展到复杂的场景理解与推理,已广泛应用于各行业。未来,随着大模型、多模态技术的发展,计算机视觉将向更智能、更贴近人类认知的方向演进,同时在边缘计算、实时性等领域面临更多工程挑战。
2025-06-14 08:48:54
998
原创 嵌入式AI?
嵌入式 AI(Embedded AI)是指将人工智能技术与算法集成到嵌入式系统中,使设备能够在本地(无需依赖云端服务器)实现数据处理、分析和决策的技术形态。它融合了嵌入式系统的实时性、低功耗特性与AI 的智能化能力,让传统硬件设备具备 “边端智能”,适用于对响应速度、隐私保护、网络依赖性要求高的场景。核心特点本地化运行无需联网即可完成数据处理和决策,避免网络延迟和断网风险(如自动驾驶汽车在隧道中实时避障)。保护用户隐私:敏感数据(如人脸、医疗信息)无需上传云端,直接在设备端处理。低功耗与轻量化。
2025-06-10 08:11:35
914
原创 C++类的嵌套详解
外层类大小不受影响: 如果内层类只是在外层类的作用域内定义,但未被声明为外层类的成员变量,则外层类的实例化对象不会包含内层类的空间。内层类此时仅是一个类型声明,不占用外层类的内存。示例代码。
2025-05-29 17:30:56
867
原创 C++创建对象过程
在看到C++的类成员被调用时,比如一个类的成员变量被调用,我总是会下意识地去想这个到底是局部变量还是全局变量,这是C语言的惯性思维,而在C++中,成员是随着对象的位置而存在的,对象在哪片内存上,成员就在哪片内存上,访问成员,都需要通过对象来调用,当然,除了静态对象。注意:对象在栈或者堆上整体分配的,那么类里面的成员就在哪个位置存着,对象是局部的,那么成员就是局部的,对象是全局的,那么成员就是全局的。注意:如果使用了构造函数的初始化列表,则会在初始化时直接就赋予对应的值,而不必分成初始化和赋值两个步骤了。
2025-05-29 17:18:05
911
原创 蓝牙和wifi相关的杂项内容总结
蓝牙技术的传输速率随着版本的演进不断提升,不同版本和模式(经典蓝牙 BR/EDR 和低功耗蓝牙 BLE)的速率差异显著。)是无线通信(如Wi-Fi、蓝牙、5G等)和电子系统中至关重要的概念,直接影响通信质量和数据传输的可靠性。例如,Wi-Fi 信道 6(2.437 GHz)干扰 BLE 信道 18-21(2.430-2.440 GHz)。:高端耳机(如索尼 WH-1000XM5)同时支持蓝牙(音乐)和 Wi-Fi(固件更新)。:蓝牙 2.0 的核心突破,实际传输速率可达 800 kbps(适合音频传输)。
2025-05-29 17:06:27
992
原创 Wi-Fi设备的发现和连接过程
WIFI扫描方式分为主动扫描和被动扫描两种,主动扫描是指STA主动去探测搜索无线网络;被动扫描则是指STA只会被动的接收AP发送的无线信号。下面分别对两种扫描方式进行简要介绍。主动扫描情况下,STA会主动在其所支持的信道上依次发送探测信号,用于探测周围存在的无线网络,STA发送的探测信号称为探测请求帧(Probe Request)。探测请求帧又可以分为两类,一类是未指定任何SSID,一类是指定了SSID的。(注意:Probe Request帧发送方式是广播)1) 探测请求帧不指定SSID。
2025-05-20 09:15:33
780
原创 Arduino和树莓派等平台简介
什么是Arduino定义上来说Arduino是包含硬件就是这个开发版和ArduinoIDE编程软件。理论上来说,Arduino也是单片机,就是51那种,但Arduino非常友好,给单片机封装了一些好东西,这导致你学习起来可以直接调用各种端口各种现成的库和函数。因此Arduino像是一个平台,你想吃水果,它给你准备好了水和土,想吃什么种什么!对于新手来说,那就是学习开源硬件的利器,神器,重器!不需要你单独学习寄存器、数字逻辑、等各种专业知识。严谨点来说:请移步百度百科Arduino。
2025-05-15 23:08:33
1111
原创 websocket简介与基本使用
WebSocket 是现代实时应用的基石技术,结合后端框架(如 Socket.IO、WebSocket API)可轻松构建高效的双向通信系统。它是 HTTP 协议的补充,专为低延迟、高效率的实时通信设计。(WebSocket Secure,基于 TLS/SSL)。:实时性强、节省带宽(相比 HTTP 轮询)。需要服务器持续维护连接(可能增加资源消耗)。(如 Google Docs 多人编辑)(Frame)传输数据,无需重复握手。确认升级为 WebSocket。(如智能家居实时状态更新)
2025-05-15 23:00:32
556
原创 ASR和TTS技术简单总结
近年来,语音技术在人工智能领域的发展极为迅速,语音识别(ASR)和文本转语音(TTS)作为两项重要的核心技术,被广泛应用于智能助手、客户服务系统、翻译设备以及教育平台等多个领域。这两种技术各自解决了语音交互中的不同问题,共同助力于实现自然、流畅的人机对话。
2025-05-15 22:56:51
1312
原创 关于NLP自然语言处理的简单总结
目前,国内的自然语言处理研究机构和企业有很多,如中科院计算所、清华大学、百度、腾讯等,其中百度的ERNIE、阿里巴巴的BERT等预训练模型在多种中文自然语言处理任务上表现出色。在这个代码示例中,我们使用了Python的TensorFlow库来实现了一个基于深度学习的情感分析算法,该算法可以对电影评论进行情感分类,这个demo比较简单,但是也说明了基于深度学习的自然语言处理算法的实现思路。未来的发展方向包括更深入的语义理解、更好的对话系统、更广泛的跨语言处理和更强大的迁移学习技术。
2025-05-15 22:53:57
934
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人