1 基于Swarm的大模型应用:一个天气助手

本次实践主要是基于open Ai 的swarm与deepSeek模型,定制一个大模型智能体,帮助我们认识swam(多智能体写作文)以及如何使用;

1 deekSeeK

注册:DeepSeek

申请自己的apiKey:******;

注意:model="deepseek-chat", 这一个参数我们需要在OpenAi 中配置;

from openai import OpenAI

client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

response = client.chat.completions.create(
    model="deepseek-chat",
    messages=[
        {"role": "system", "content": "You are a helpful assistant"},
        {"role": "user", "content": "Hello"},
    ],
    stream=False
)

print(response.choices[0].message.content)

2 python环境

注意:安装swarm需要依赖于3.10.0版本;

pip install git+https://github.com/openai/swarm.git

内容概要:本文详细介绍了使用 DeepSeek v3 智能体开发实战的相关技术和应用场景。主要内容包括智能体的基础概念及其核心技术组成部分,例如大语言模型(LLM)、规划、记忆、工具及行动等。文章展示了如何通过 Python 代码调用 Swarm 框架,并结合外部 API 实现智能体间的高效协作和具体业务逻辑,特别是在航空公司智能客服系统中,如何利用智能体处理航班取消、变更和行李丢失等问题。具体实现步骤涵盖了智能体初始化、流式处理、指令设置、函数调用及多轮对话管理等内容。 适合人群:具有一定编程基础的研究人员和技术从业者,特别是那些对大模型技术、智能体架构设计感兴趣的开发人员。 使用场景及目标:本文主要适用于构建和实现智能体系统,尤其是涉及多智能体协同工作的复杂业务流程。读者可以学到:① 如何基于DeepSeek的智能体和OpenAI的GPT-4 mini模型实现自动化客户服务应用,比如处理航班相关的各种用户请求;② 利用 Swarm 实验性框架实现高效的任务管理和智能调度,以及如何调用第三方API接口来增强智能体的能力,提高问题解决的速度与准确性。 阅读建议:在学习本文提供的方法和技术实现时,除了掌握Python编程和OpenAI API的使用外,还应当关注多智能体体系的设计原则、业务流程逻辑、人机交互优化等方面的知识,从而深入理解整个开发思路。由于文中包含大量代码示例和逻辑流程图解,在实际操作过程中可参照提供的开源项目链接进行实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值