线性代数基础零碎知识点整理——矩阵、行列式

本文精炼总结了线性代数中的关键概念,包括分块矩阵的运算、对角矩阵特性、可逆矩阵的定义及其求逆方法。特别探讨了分块矩阵在简化复杂计算中的应用,以及如何通过矩阵的性质来理解线性代数的基本原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本篇文章主要对线性代数的基础内容——矩阵、行列式、线性方程组、线性空间等内容进行整理,水平有限仅供参考。




1. 分块矩阵以及其运算性质

分块矩阵即将原矩阵按行(或列)进行分块,使得原方程的表示更为简洁,并且有助于简化运算。

1. 加法及数乘
  • 条件:对于矩阵AAABBB,保证其分块方式相同
  • 加法性质 A+B=[Aij+Bij] A + B = [A_{ij} + B_{ij}]A+B=[Aij+Bij]
  • 数乘性质 kA=[kAij] kA = [kA_{ij}] kA=[kAij]
2. 转置(permutation)

若对于矩阵AAA
A=[A11A12⋯A1nA21A22⋯A2n⋮⋮⋱⋮An1An2⋯Ann] A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \\ \end{bmatrix} A=A11A21An1A12A22An2A1nA2nAnn
AT=[A11TA21T⋯An1TA12A22⋯An2T⋮⋮⋱⋮A1nTA2nT⋯AnnT] A^T = \begin{bmatrix} A_{11}^T & A_{21}^T & \cdots & A_{n1}^T \\ A_{12} & A_{22} & \cdots & A_{n2}^T \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n}^T & A_{2n}^T & \cdots & A_{nn}^T \\ \end{bmatrix} AT=A11TA12A1nTA21TA22A2nTAn1TAn2TAnnT

3. 分块矩阵乘法
  • 条件:矩阵AAA对列的分法(相当于在不同间隔的列之间插入“竖线段”)与矩阵BBB对行的分法(相当于在不同间隔的行之间插入“横线段”)

  • A=[A11A12⋯A1tA21A22⋯A2t⋮⋮⋱⋮At1At2⋯Att]B=[B11B12⋯B1pB21B22⋯B2p⋮⋮⋱⋮Bp1Bp2⋯Bpp] A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1t} \\ A_{21} & A_{22} & \cdots & A_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{t1} & A_{t2} & \cdots & A_{tt} \\ \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1p} \\ B_{21} & B_{22} & \cdots & B_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ B_{p1} & B_{p2} & \cdots & B_{pp} \\ \end{bmatrix} A=A11A21At1A12A22At2A1tA2tAttB=B11B21Bp1B12B22Bp2B1pB2pBpp
    AB=[C11C12⋯C1nC21C22⋯C2n⋮⋮⋱⋮Cn1Cn2⋯Cnn] AB = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \\ \end{bmatrix} AB=C11C21Cn1C12C22Cn2C1nC2nCnn
    其中 Cij=Ai1Bi1+Ai2Bi2+...+AitBijC_{ij} = A_{i1}B_{i1} + A_{i2}B_{i2} + ... + A_{it}B_{ij}Cij=Ai1Bi1+Ai2Bi2+...+AitBij
4. 分块求逆

A=diag(A1,A2,...,As)A = {\rm diag}(A_1, A_2, ..., A_s) A=diag(A1,A2,...,As)A−1=diag(A1−1,A2−1,...,An−1) A^{-1} = {\rm diag}(A_1^{-1}, A_2^{-1}, ..., A_n^{-1}) A1=diag(A11,A21,...,An1)
对于次对角矩阵
A=[O⋯OA1O⋯A2O⋮⋮⋮As⋯OO] A = \begin{bmatrix} O & \cdots & O & A_1 \\ O & \cdots & A_2 & O \\ \vdots & \quad & \vdots & \vdots \\ A_s & \cdots & O & O \\ \end{bmatrix} A=OOAsOA2OA1OO则有
A−1=[OO⋯As−1⋮⋮⋮OA2−1⋯OA1−1O⋯O] A^{-1} = \begin{bmatrix} O & O & \cdots & A_s^{-1} \\ \vdots & \vdots & \quad & \vdots \\ O & A_2^{-1} & \cdots & O \\ A_1^{-1} & O & \cdots& O \\ \end{bmatrix} A1=OOA11OA21OAs1OO

2. 对角矩阵的一些性质

A=diag(A1,A2,...,As)A = {\rm diag}(A_1, A_2, ..., A_s)A=diag(A1,A2,...,As), B=diag(B1,B2,...,Bs)B = {\rm diag}(B_1, B_2, ..., B_s)B=diag(B1,B2,...,Bs), 则有

  1. AB=diag(A1B1,A2B2,...,AsBs)AB = {\rm diag}(A_1B_1, A_2B_2, ..., A_sB_s)AB=diag(A1B1,A2B2,...,AsBs)
  2. Am=diag(A1m,A2m,...,Asm)A^m = {\rm diag}(A_1^m, A_2^m, ..., A_s^m)Am=diag(A1m,A2m,...,Asm)
  3. ∣A∣=∣A1∣∣A2∣⋯∣As∣|A| = |A_1||A_2|\cdots|A_s|A=A1A2As
  4. A−1=diag(A1−1,A2−1,...,An−1)A^{-1} = {\rm diag}(A_1^{-1}, A_2^{-1}, ..., A_n^{-1})A1=diag(A11,A21,...,An1)

3. 可逆矩阵(Invertable matrix)

Def:Def:Def: 对于矩阵AAA,若存在一个矩阵A−1A^{-1}A1,使得
AA−1=A−1A=E AA^{-1} = A^{-1}A = EAA1=A1A=E
则称AAA可逆矩阵A−1A^{-1}A1为A的逆矩阵

  • 关于定义可以得知的事实:逆矩阵的逆为原矩阵,地位可以交换。并且可逆矩阵必为方阵。而且矩阵的逆矩阵必定是唯一的。
求逆矩阵的方法、判断可逆的方法

定理\quadAAAn(n>1)n(n>1)n(n>1) 阶方阵,则AAA可逆的充分必要条件是∣A∣≠0|A| \neq 0A=0,并且当AAA可逆时,其逆矩阵为
A−1=1∣A∣A∗ A^{-1} = \frac{1}{|A|}A^*A1=A1A

可逆矩阵具有的一些性质
  1. ∣A−1∣=1∣A∣|A^{-1}| = \frac{1}{|A|}A1=A1
  2. (AT)−1=(A−1)T(A^T)^{-1} = (A^{-1})^T(AT)1=(A1)T
  3. (kA)−1=k−1A−1(kA)^{-1} = k^{-1}A^{-1}(kA)1=k1A1
  4. (AB)−1=B−1A−1(AB)^{-1} = B^{-1}A^{-1}(AB)1=B1A1
  5. 对于初等矩阵,有E[i(k)]−1=E[i(k−1)]E[i(k)]^{-1} = E[i(k^{-1})]E[i(k)]1=E[i(k1)], E[i+j(k)]−1=E[i+j(−k)]E[i + j(k)]^{-1} = E[i + j(-k)]E[i+j(k)]1=E[i+j(k)], E[i,j]−1=E[i,j]E[i, j]^{-1} = E[i, j]E[i,j]1=E[i,j]

4. 关于可交换性(switchable)

当矩阵AAABBB满足可交换性时,则必有

  • (AB)k=AkBk(AB)^k = A^kB^k(AB)k=AkBk
  • (A+B)k(A + B)^k(A+B)k 满足二项式定理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值