一文详解激光SLAM框架LeGO-LOAM

本文详细介绍了针对可变地形优化的轻量级激光SLAM算法LeGO-LOAM,针对LOAM在计算能力和特征匹配上的问题,LeGO-LOAM提出地面点云分割和特征提取策略,提高了在复杂环境下的实时性和准确性。通过地面点云配准和非地面点云的边缘、面点特征,实现高效位姿估计和地图构建。实验表明,LeGO-LOAM在特征点数量、迭代次数和运行时间上均有显著优化,且保持了高精度的位姿估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者介绍:Zach,移动机器人从业者,热爱移动机器人行业,立志于科技助力美好生活。

LOAM存在的问题

LeGO-LOAM全称为:Lightweight and Groud-Optimized Lidar Odometry and Mapping on Variable Terrain,从标题可以看出 LeGO-LOAM 为应对可变地面进行了地面优化,同时保证了轻量级。

LeGO-LOAM是专门为地面车辆设计的SLAM算法,要求在安装的时候Lidar能以水平方式安装在车辆上;如果是倾斜安装的话,也要进行位姿转换到车辆上。而LOAM对Lidar的安装方式没有要求,即使手持都没有关系。

作者的实验平台是一个移动小车(UGA),挂载了一个Velodyne VLP-16 线激光雷达,还配有一个低精度的 IMU;选用的硬件平台是 Nvidia Jetson TX2(ARM Cortex-A57 CPU);整体负载是 20Kg;移动速度为:2.0m/s;测试场景为:地面不平(比较颠簸)的草地

ed08b3382936a166e3a45f259d36cf42.png

图1 硬件平台

LOAM框架在这样的硬件环境和使用场景中会存在一些问题:

  1. 由于搭载的是嵌入式系统,计算能力将会受限,LOAM的计算需要将难以满足,致使无法做到实时;

  2. 如果使用LOAM框架,系统计算每个点曲率的处理频率(数据量很大,VLP-16一条线是1800个点)将难以跟上传感器的更新频率;

  3. UGA行驶的路面是非平滑连续的(运动是颠簸的),采集的数据将会失真(运动畸变,匀速运动模型无法适用于颠簸场景),使用LOAM很难在两帧之间找到可靠的特征对应。

  4. 在噪杂的环境中操作UGV也会给LOAM带来一些挑战,例如:浮动的草丛和摆动的树叶的点云将被误提取为角点或面点,这些特征是不可靠的,难以在连续帧之间获取准确的匹配,从而会造成较大的漂移。

LeGO-LOAM的设计思路

0e262568092942183a89026771b8f90c.png

对地面点云的配准主要使用的是面点特征;在分割后的点云配准主要使用的是边缘点和面点特征。从中可以看出使用边缘点的数量是要远小于平面点的数量,这也是能实现加速的主要原因。

aab21036a3aed795b21247ab3b3f3ab0.png

LeGO_LOAM的软件系统输入 3D Lidar 的点云,输出 6 DOF 的位姿估计。整个软件系统分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值