深度学习模型部署简要介绍

本文简要介绍了深度学习模型部署,重点讲述了使用TensorRT进行推理的步骤,包括构建Engine、运行引擎、混合精度和动态尺寸。此外,探讨了TensorRT的优化方法,如性能度量工具和优化策略。同时,提到了CUDA编程,阐述了线程层次结构和内存层次结构,以及CUDA编程优化技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、模型部署简介

近几年来,随着算力的不断提升和数据的不断增长,深度学习算法有了长足的发展。深度学习算法也越来越多的应用在各个领域中,比如图像处理在安防领域和自动驾驶领域的应用,再比如语音处理和自然语言处理,以及各种各样的推荐算法。如何让深度学习算法在不同的平台上跑的更快,这是深度学习模型部署所要研究的问题。

目前主流的深度学习部署平台包含GPU、CPU、ARM。模型部署框架则有英伟达推出的TensorRT,谷歌的Tensorflow和用于ARM平台的tflite,开源的caffe,百度的飞浆,腾讯的NCNN。其中基于GPU和CUDA的TensorRT在服务器,高性能计算,自动驾驶等领域有广泛的应用。

f2219fd9a8cc1960ae803c011afc471c.png

d3173743e3f74deca91fd34de2b85e4f.png

二、使用TensorRT进行推理

1、构建TensorRT Engine

使用TensorRT进行推理,共分为两个阶段。

  • 第一个阶段主要是构建TensorRT引擎。目前的主流方式是从onnx转换为TensorRT的引擎。而从各种训练框架都有非常丰富的工具,可以将训练后的模型转换到onnx。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值