论文笔记:Revisiting Single Image Depth Estimation: Toward Higher Resolution Maps with ...(WACV2019)
以往方法往往深度预测损失了分辨率或者在边界存在扭曲和模糊问题。
本文提出2个改进:1. 不同尺度下提取特征的策略 2. 使用3个损失,分别是深度、梯度、法向量
c:当前最好模型,存在物体形状扭曲、小物体缺失、马赛克
Introduction
早期:
比如Eigen提出的,直接cnn预测,分辨率很低
目前:
上投影(up-projection)上采样方法
CRF结合CNN,端到端学习
联合多任务学习
近期:
扩张卷积(dilated convolution)
本文模型结构:4个模块:E:encoder和.
原创
2020-12-20 23:57:02 ·
2142 阅读 ·
10 评论