pytorch 如何通过图像深度连续性计算Loss

本文介绍了如何在单目深度估计中,利用图像的深度连续性来计算Loss。通过计算预测深度图和原始图像的梯度,并结合对数函数,实现了对深度连续区域的有效约束。作者指出,虽然该方法忽略了边缘区域,但在边缘可能连续的情况下,这种方法可能存在改进的空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在单目深度估计中,利用图像的深度连续性来提供约束,计算Loss是一个很常见的方式,代码到底应该怎么写,之前一直没有想通。最近读源码学到了一些骚操作(原谅我的短见薄识),记录一下,先贴代码:

def get_smooth_loss(disp, img):
    """Computes the smoothness loss for a disparity image
    The color image is used for edge-aware smoothness
    """
    grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
    grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])

    grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
    grad_img_y = torch.mean(torch.abs(img[:, 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值