在单目深度估计中,利用图像的深度连续性来提供约束,计算Loss是一个很常见的方式,代码到底应该怎么写,之前一直没有想通。最近读源码学到了一些骚操作(原谅我的短见薄识),记录一下,先贴代码:
def get_smooth_loss(disp, img):
"""Computes the smoothness loss for a disparity image
The color image is used for edge-aware smoothness
"""
grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])
grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
grad_img_y = torch.mean(torch.abs(img[:,