leetcode Day6 LC 打家劫舍

这篇博客介绍了如何使用动态规划解决一个经典的最优化问题,即在一系列房屋中选择一些进行盗窃以获得最大总额,但相邻房屋不能同时被盗。通过自底向上的状态转移方程,实现了全局最优解的计算,区别于贪心算法,动态规划在此类问题中能保证复杂度较高的情况下找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是一道动态规划入门题

动态规划求的并不是最优解,而是最优值,就比如这道题,最后并不会输出每一步的具体做法,(当然你要记录下来也是可以的),然后动态规划其实就是遍历所有情况找最好的,因此和贪心不同,得出的结果是全局最优,复杂度也会更高。

题目:
在这里插入图片描述

思路:这家偷,上家就不能偷,这家不偷,上家就可以选择偷与不偷

class Solution:
    def rob(self, nums: List[int]) -> int:
        length = len(nums)
        if length==0:
            return 0
        if length==1:
            return nums[0]
        dp = [[0,nums[0]],[nums[0],nums[1]]]
        for i in range(2,length):
        #状态方程,自下向上求解
            dp[i%2][0] = max(dp[(i+1)%2][0], dp[(i+1)%2][1])
            dp[i%2][1] = dp[(i+1)%2][0] + nums[i]
        return max(max(dp))

提交结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值