cs231n训练营学习笔记(2)

本文深入探讨了图像分类数据及标签的概念,解析了L1、L2范数的应用场景,阐述了KNN算法原理及其在图像分类中的局限性,介绍了CIFAR-10数据集,并讨论了超参数选择与数据集划分的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 图像分类数据和label分别是什么  图像分类存在的问题与挑战

2.  L1范数,L2范数数学表达式  这两种度量分别适用于什么情况

3. 描述近邻算法KNN  NN算法复的杂度 为什么很少使用在图像中以及它存在的问题

4. 了解cifar10数据集

5. 超参数怎么选择合适(即数据集如何划分)


1. 图像分类数据和label分别是什么  图像分类存在的问题与挑战

数据就是输入的图像像素,label是代表图像中物体的类别标签

问题和挑战就是计算机看到的是一大片像素值,它很难理解这些像素代表的意义,即语义鸿沟

而且还有看到目标的角度变化,遮挡,变形,光线变化,和背景很像,类内差异

2.  L1范数,L2范数数学表达式  这两种度量分别适用于什么情况

旋转坐标轴(矩阵乘法)会改变L1距离,但不会改变L2距离

L1适用于输入特征向量的值有一定意义的情况,比如对员工分类,特征向量各个数值代表薪资、工作年限之类的

L2适用于向量中各值没有什么特殊意义,它的距离更自然

3. 描述近邻算法KNN  NN算法复的杂度 为什么很少使用在图像中以及它存在的问题

数据驱动类算法,是比深度学习更广义的理念,所以在学习神经网络以及CNN前,先学习了简单的线性分类器,NN,KNN

在训练分类器时,什么都不做,只是读数据,时间复杂度是O(1)

在预测时,读入新的数据,对比前面训练时读进去的数据,对比距离,找到最近的,即NN,最近邻方法,时间复杂度是O(N),因为要和所有的训练数据对比

正常我们希望训练时间长而预测时间短,因为训练可以离线进行,而预测为保证实时性用时越短越好。

KNN是在NN的基础上,不是计算距离最近的点,而是距离最近的N个点,这N个点里哪个类更多(这是简单的投票,也可以加权投票),预测数据就被分到那个类里,以此避免噪声离群点影响预测结果。

在图像中很少使用KNN的一个原因是维度灾难(curse of dimentionality),KNN更像是用分类器把样本空间分成几块,如果想要分类效果好,需要样本数据紧密地分布在空间里,不然距离可能会很远,也就是和待测数据不太相似。而为了密集分布,需要的训练数据呈指数增长

4. 了解cifar10数据集

10个类,5万训练集,1万测试集

类分别是:飞机,汽车,鸟,猫,鹿,狗,青蛙,马,船,卡车

5. 超参数怎么选择合适(即数据集如何划分)

对于线性分类器,KNN中K的值,距离函数的选择都是超参数,需要尝试哪个超参数更好

评价更好的标准,比较好的做法是:在训练集上用不同组的超参数训练,然后在验证集上验证,选择表现最好的一组超参数,最好用在测试集上进行测试。

在小测试集上经常使用的方法是交叉验证,但是太废计算资源了,深度学习通常不用这个方法。

资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 在心电信号处理领域,实验(一)“心电2”主要聚焦于心电图(ECG)信号的分析与处理。心电图是记录心脏电生理活动的重要工具,被广泛用于临床诊断和健康监测。本实验的核心内容分为两部分:一是模拟数据使用,二是RST波的检测。 实验中使用的ECG.mat文件包含了心电图信号的模拟数据。在实际研究和教学中,模拟数据常被用来代替真实采集的数据,因为它们能够精确控制、重复生成,且便于开展各种假设性实验。这些模拟数据可能包含正常的心电信号波形,如P波、QRS复合波和T波,也可能包含异常情况,如心律不齐、早搏等。通过对这些模拟信号的分析和处理,可以深入理解心电图的基本特征,并学习如何提取有用信息,例如心跳周期、心率等。 peakdetect.m是Hooman Sedghamiz在2014年编写的RST波检测程序。RST波,尤其是QRS复合波,是心电图分析的关键部分,因为它标志着心脏心动周期中的一个关键阶段——心室激动。该程序采用基于状态机逻辑的算法,这种算法通常涉及一系列预定义的状态,每个状态对应于心电信号的不同特征或变化。通过这种方式,程序能够有效识别和定位QRS波群,从而计算出心率和其他相关参数。状态机方法在信号处理中具有良好的鲁棒性和适应性,能够处理不同质量和复杂性的ECG信号。在心电信号检测中,峰检测是一个核心步骤,它涉及寻找信号中的局部最大值。peakdetect.m可能包含了对信号平滑、阈值设定、波形匹配等预处理步骤,以减少噪声影响并准确捕捉到QRS波的起点和终点。这一过程对于识别异常心律、诊断心律失常至关重要。 在实验过程中,学生和研究人员可以利用ECG.mat数据和peakdetect.m程序进行以下实践操作:1. 加载并可视化心电图信号,了解其基本形态和特征;2. 运行peakdet
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值