摘要
人工智能处理大量信息,生成新内容,并通过预测分析帮助决策制定。在教育领域,人工智能已经将传统的师生关系转变为教师-人工智能-学生的动态关系。这种转变需要重新审视教师在AI时代的角色和所需能力。然而,很少有国家定义了这些能力或制定了培训人工智能教师的国家计划,使许多教育工作者没有适当的指导。
针对教师的AI能力框架通过定义教师在AI时代必须掌握的知识、技能和价值观来解决这一差距。该出版物以保护教师权利、增强人的能动性和促进可持续性为原则,概述了五个维度的15项能力:以人为本的思维方式、人工智能的伦理、人工智能基础和应用、人工智能教学法和人工智能促进专业学习。这些能力可分为三种进展级别:获取、深化和创造。作为全球参考,该工具指导国家人工智能能力框架的制定,为教师培训方案提供信息,并帮助设计评估参数。它还为教师提供了构建AI知识、应用伦理原则和支持其专业成长的策略。
到2022年,只有7个国家为教师制定了人工智能框架或计划。
前言
人工智能(AI)系统的迅速崛起对教学和学习产生了深远的影响,特别是关于教师的角色以及他们在不断发展的技术领域中所需的能力。人工智能在教育中的使用提出了关于教师机构的基本问题,以及他们确定如何以及何时明智地使用这项技术的能力。教师迫切需要获得授权,以更好地了解人工智能的技术、道德和教学层面。然而,截至2022年,只有7个国家为教师制定了人工智能能力框架或专业发展计划。
教科文组织为教师制定的这一至关重要的新人工智能能力框架使各国能够填补这一空白。这是有史以来第一个此类全球框架,旨在为国家人工智能能力框架和教师专业培训计划的发展提供信息,确保他们将教育作为公共产品来推进。该框架与教科文组织的使命相一致,倡导以人为本的方法,将教师的人工智能能力与人权和人类问责制的原则相结合。通过这种方式,它响应了2021年联合国教科文组织报告《一起重新想象我们的未来:教育的新社会契约》的紧急呼吁,以帮助改变人类与技术的关系。该出版物建立在教科文组织以前在该领域的工作基础上,例如教师的ICT能力框架,人工智能和教育:政策制定者指南,以及最近的教育和研究中生成人工智能指南。它借鉴了广泛的利益相关者的贡献,受益于教科文组织会员国对开发和实施人工智能学校课程的见解,国际工作组的专业知识,四次国际磋商会议和多轮在线磋商。教师的人工智能能力框架与学生的能力框架一起开发。我希望这两个框架将使教师和学生能够塑造我们想要的包容性和可持续的数字未来。在一个日益复杂和不确定的世界中,我们的集体责任是确保教育仍然是改变我们共同未来的核心空间。
文章目录
Chapter 1: Introduction
1.1为什么要建立AI能力框架?
人工智能(AI)对教育、教学和学习以及教师的角色和能力有着重要的影响。事实上,人工智能可以处理远远超出人类能力的大量信息和文本,可以在人类思维的符号表示范围内产生新的内容,识别以各种格式呈现的数据模式,并可以通过预测分析促进人类决策。在教育中使用人工智能的新兴实践清楚地表明了人工智能在实现新形式的教学,学习和教育管理,增强学习体验和支持教师任务方面的潜力。然而,人工智能可能对学生、教学社区、教育系统和整个社会构成重大风险。人工智能可能会威胁人类行为,加剧气候变化,侵犯数据隐私,加深长期存在的系统性不平等和排斥,并导致新形式的歧视。在教育领域,人工智能可以将教学和学习过程简化为计算和自动化任务,从而贬低教师的作用和影响力,并削弱他们与学习者的关系。它可以将教育范围缩小到人工智能可以处理、建模和交付的内容。最后,它还可能加剧全世界合格教师短缺的问题,因为它不成比例地花费在技术上,而牺牲了对人的能力发展的投资。
因此,在教育中使用人工智能需要仔细考虑,包括检查教师需要扮演的不断变化的角色,以及教师在道德和有效使用人工智能方面所需的能力。教师是人工智能在教育中的主要用户,他们被期望成为学生学习人工智能的设计者和促进者,在人工智能丰富的教育环境中安全和道德实践的监护人,并成为终身学习人工智能的榜样。为了承担这些责任,教师需要得到支持,以发展他们的能力,利用人工智能的潜在好处,同时减轻其在教育环境和更广泛的社会中的风险。国家教育当局需要动态地审查和重新定义教师的角色和所需的能力,加强教师培训机构,并制定适当的能力建设计划,使教师能够以有效和道德的方式与人工智能合作。然而,根据最近的一项调查(联合国教科文组织,2023 a),到2022年,只有7个国家为教师制定了人工智能框架或计划。这在很大程度上可以解释为缺乏关于如何在教育和教学实践中不断增长的人类-人工智能互动的背景下定义教师角色和能力的知识。
教师人工智能能力框架(AI CFT)旨在支持教师人工智能能力的发展,使他们能够以安全,有效和道德的方式在教学实践中使用这些技术工具。这一框架以人为本,对知识、理解和所需技能采取了这样的做法。它认为,虽然人工智能提供了在教学和学习过程管理方面支持教师的机会,但教师和学生之间有意义的互动以及人类的繁荣应该仍然是教育体验的中心。教师不应该也不能被技术取代-在教育系统、工作场所和整个社会越来越多地使用人工智能的背景下,保障教师的权利并确保他们有足够的工作条件至关重要。
1.2宗旨和目标受众
AI CFT针对需要应用AI以促进核心学科领域学习的教师。它不是为那些专门负责教授高级AI知识和技能的教师设计的。虽然下面提出的人工智能CFT的五个方面和三个掌握水平可以为定义人工智能教师的能力提供基础,但这些能力的深度和广度需要根据将人工智能作为一个特定学科教学所需的更高层次的要求进一步完善。AI CFT旨在指导教师积极、持续的专业发展和学习,以采用以人为本的方法在教育中采用AI。AI CFT的具体目标是提供一个参考框架,帮助形成国家、州一级或机构的教师AI能力框架或培训方案;为教师教育工作者提供一个设计和规划AI培训课程的操作框架;并建立一个基准矩阵,评估教师的AI能力和在使用AI方面的专业学习。因此,该框架是为政策制定者、师范教育提供者、教师工会、学校领导、教师和教育专家设计的。
1.3与教师信通技术能力框架保持一致
AI CFT与2018年联合国教科文组织教师ICT能力框架(ICT CFT)保持一致,并对其进行补充,该框架在支持教师利用ICT和数字技术提高教学和专业学习能力方面仍然具有相关性。如第3章所述,人工智能CFT的结构遵循ICT CFT的结构。这两个框架都以一个愿景为基础,该愿景旨在赋予教师适当利用教育技术所需的能力。这两个框架共享一个共同的架构,为教师的专业发展提供全面的方法,涵盖了实习、在职和持续支持阶段,从而确保信息和通信技术与人工智能工具的持续发展和实际整合。通过在其组织中反映信息和通信技术CFT的整体方法,AI CFT还提出了有效支持教师持续专业学习所需的有利技术和政策环境。这些有利的环境包括包容性地获得连接和内容、以人为本的政策、有利的课程和评估系统、对教师的跨部门支持以及与教学界的接触。
1.4人工智能的技术进步及其对教师能力的影响
AI CFT与ICT CFT保持一致,但更进一步考虑了自采用前几代ICT工具以来发生的技术进步对教师能力的影响,这些技术进步体现在AI技术上。从最基本的形式来看,人工智能与其他形式的数字技术的区别在于它模仿人类行为的能力。这一独特的特征挑战了人类的能动性。事实上,前几代ICT工具更多地关注于促进日常任务,而人工智能工具往往会取代人类决策,基于对过去案例的大量数据分析得出的模式预测。因此,过度依赖人工智能可能会导致教师基本能力的萎缩。人工智能有可能篡夺教师的自主决策能力,这就需要更加强调教师代理和以人为本的心态,这有助于确保人工智能的使用有助于人类能力的发展。
为训练人工智能系统而挖掘数据会威胁到个人数据隐私。前几代信通技术工具的设计目的是传递或分享信息,往往仍然是对用户手动操作这些工具作出反应。相比之下,人工智能平台设计背后的数据挖掘涉及积极掠夺和利用个人数据,通常未经同意。此外,人工智能系统提供商背后的隐性商业规则诱使用户在注册人工智能服务的“好处”时放弃一定程度的隐私。虽然前几代ICT工具引发了一些关于隐私和安全的道德问题,但设计和提供人工智能服务的积极方法引发了更深刻的风险,并可能加深社会不平等。这一更基本、更有争议的技术进步加剧了教师了解与教学中各种人工智能工具互动相关的伦理问题的紧迫性,以确保学生安全、负责任地使用这些工具。在其当前生成输出的方法中,AI生成的内容更可能是随机的。前几代信通技术工具往往是确定性的,同样的投入总是导致同样的产出。另一方面,最近的人工智能工具在生成输出或预测时更有可能是随机的,因为相同的输入可能会导致不同的输出。因此,人工智能生成的内容可能不太可信,特别是对于事实和概念知识的教学。鉴于人工智能方法背后的“黑匣子”不透明,教师需要了解人工智能是如何训练的,以及人工智能是如何工作的。他们还需要有能力批判性地检查AI输出的准确性,并设计适当的教学方法,以指导在教学和学习中使用AI合成的内容。
AI系统能够适应不同的问题空间。因此,它们提供了通用的基础模型,有可能推动各个部门的转型。特别是生成式AI,它提供了基础模型,可以支持特定领域AI模型的进一步训练和个性化工具的定制。由于其更具动态适应性,人工智能技术有可能改变商业模式以及社会和个人实践。鉴于人工智能的变革潜力,重要的是引导教师了解其社会影响和新兴人工智能社会中的公民责任,并通过持续的专业学习激励和支持他们。
Chapter 2: Key principles
2.1确保包容性的数字未来
在人工智能时代确保公平和包容的数字未来必须建立在坚实的人类和社会基础之上。教师是人工智能在教育领域的主要用户,也是确保人类与技术(一般而言)、特别是知识与学习之间不断发展的关系得到充分重新定义和平衡的关键调解者。因此,人工智能CFT旨在帮助教师解读人类与人工智能互动的多层次和多视角的基本价值观和态度,从四个主要原则开始:
- 揭穿AI炒作:AI的设计和使用是人类主导的。那些创造人工智能系统和工具的人可以决定它是否以及在多大程度上被赋予保护和增强人类能力的解放潜力,或者相反,嵌入恶意目的和/或无意的偏见,侵犯人权并破坏人类机构和能力。教师需要具备评估人工智能潜在积极和消极影响的关键能力。他们需要意识到,只有有意的道德设计(“设计的道德”),以及人工智能的规范部署,才能真正提高人类的能力,包容性和可持续性。
- 理解人工智能设计所固有的威胁:当前人工智能的算法路径和模型对人权和隐私提出了严峻的挑战。此外,人工智能生成的内容一直在破坏土著知识、文化和语言。教师需要了解人工智能系统是如何设计的,以及人工智能模型是如何工作的,以便能够保护人类的能动性、语言和文化多样性以及土著知识。
- 确保人类和社会价值观占上风:利润驱动的算法也会通过促进个人与真实的世界和其他人的隔离来削弱社会价值观和凝聚力。同理心、利他主义、正义、跨文化同情和团结的价值观对于社会凝聚力和维护我们共同的人性至关重要。人工智能和其他数字技术不能阻止人们与他人和真实的世界保持联系,也不能阻止人们尊重数字空间之外的生活和认知方式的权利。
- 引导人工智能促进人类能力发展:在没有适当教学指导的情况下,在教育中使用人工智能可能会削弱学生的智力发展。在教育中使用人工智能的目的应该不仅仅是提供信息和标准化的答案,而是要丰富探究,发展智力和增强能力。
2.2以人为本的AI方法
在教育中以人为本的人工智能方法至关重要-这种方法促进关键的道德和实践原则,以帮助规范和指导所有利益相关者在人工智能系统的整个生命周期中的实践。这些关于在教育中使用人工智能的以人为本的原则已经通过教科文组织的《关于人工智能伦理的建议书》(2022年a)以及各种政策指导工具(包括《人工智能与教育北京共识》)反复阐述。(联合国教科文组织,2019),人工智能和教育:政策制定者指南(联合国教科文组织,2022 b),以及教育和研究中的生成人工智能指南(联合国教科文组织,2023 b)。该方法包括四个核心原则:人工智能的设计和使用应服务于增强人类能力和可持续发展;人工智能的获取和部署应公平和包容;使用中的人工智能模型应可解释,安全和无害;最后,人工智能影响的选择,使用和监测应由人类控制和人类负责。
实施以人为本的方法需要监管机构、人工智能提供者和机构共同负责治理,然后才能要求教师应用适用于其职业的原则。在这种情况下,人工智能CFT以以下方式扩展了这些原则,强调教师的心态和人工智能的道德规范:
- 赋予教师对人工智能的人类责任:设计和使用人工智能的道德和法律的责任应该归于个人。在教师的人工智能能力的特定背景下,这一人类问责原则意味着人工智能工具不应取代教师在教育中的合法责任。教师应继续对在教学中使用人工智能以及促进学生使用人工智能的教学决策负责。要使教师在实践层面上负起责任,一个先决条件是政策制定者、教师教育机构和学校承担起准备和支持教师正确使用人工智能的责任。
- 促进包容性:结构性排斥和歧视往往嵌入在人工智能的设计和使用中。教师应该注意潜在的算法偏见。在其职责范围内,教师需要确保所有学生以包容的方式使用人工智能,无论其性别,种族,能力或社会经济或移民身份如何。还应支持教师在利用人工智能时促进社会包容和文化多元化。
- 承认用户有权质疑人工智能工具的可解释性:用于生成看似可靠或令人信服的响应的人工智能模型可能无法解释,并且可能充满隐藏的风险。AI CFT为教师提供适合其教学职责范围的技能和知识,以理解和批判性地评估AI工具,包括其可解释性和安全性。这可以使教师了解人工智能如何得出结论,从而可以批判性地评估其使用并在必要时进行干预。
- 理解和监测人工智能的人为控制影响:教师需要意识到人工智能是人类主导的,设计师的决定会对人权、尊严以及社会和环境福祉产生影响。人工智能CFT旨在培养教师对人工智能工具背后的设计意图的认识,以及他们利用人工智能优势的能力,同时在其职责范围内控制人工智能应用对学生学习和福祉可能产生的不利影响。
2.3保护教师的权利,反复(重新)界定教师的作用
为了在人工智能时代维护社会价值观和问责制,还必须认识到教师和学习者之间的互动和合作是教育的核心。人工智能工具永远不应该被设计成取代教师在教育中的合法责任。在教育中引入人工智能时,必须建立法律的保护措施来保护教师的权利,并需要做出长期的财政承诺,以确保教师能够包容性地获得技术环境和基本的人工智能工具,作为适应人工智能时代的重要资源。考虑到人工智能改变教学和学习的潜力,政策制定者应该紧急审查并反复(重新)定义教师的角色和所需的能力。需要适当的能力建设方案,使教师能够在人工智能日益丰富的环境中工作。随着人工智能工具在辅助决策循环和生成内容方面的新兴功能,教师和学生之间的互动可以说正在成为三角形,因为人工智能系统越来越多地调解准备,教学,学习和评估。因此,教师需要被赋予权力,作为协作知识生产者,并在人工智能时代作为公民的指导。为了帮助教师探索和承担这些新角色,AI CFT旨在培养他们对AI社会影响的以人为本的意识,以及他们适应和适应AI在教育中不断发展的能力。
2.4促进可信赖和环境可持续的AI教育
在让教师负责遵守道德原则之前,必须验证人工智能系统在教育中的安全性和可信度。在教育环境中采用人工智能工具之前,应通过在国家和/或机构层面对人工智能工具进行严格验证来强制执行“设计伦理”原则。这种事先验证,以及可信赖的人工智能教育工具的法律的白名单,可以减轻教师对超出其角色和/或能力的道德治理的责任。根据上述核心价值观,审定程序应优先考虑以下原则:
- 强制执行“不伤害”原则:验证应强制执行“不伤害”原则,并要求教育中使用的所有人工智能工具在设计时都清楚地了解其对人权、尊严、安全、社会福祉和环境可持续性的潜在影响。
- 优先考虑环境友好型人工智能工具:“不伤害”原则应强调人工智能的环境成本,特别是其生命周期和价值链可能损害环境并加剧气候危机的方式。这种对人工智能碳排放的理解对教师至关重要,也有助于提高学生对气候变化的认识。
- 为教育目的验证值得信赖的人工智能:还应设计严格的验证机制,以验证用于教育目的的固有可靠性和安全性的人工智能系统,包括有特殊需要的学生。这种人工智能系统应该没有恶意意图和/或有害后果,对操纵具有鲁棒性和弹性,并且能够保护学习者的隐私和敏感的个人数据。人工智能工具的年龄适当性和教学效用也应该在大规模采用之前进行检查和验证。
- 人类负责的设计和开发:教育机构和技术提供商应该对人工智能的性能、结果和影响的透明度和可解释性负责。
2.5确保适用于所有教师并反映数字化发展
人工智能素养和获取可能被认为是人工智能时代基本权利的一部分,人工智能能力正在成为教师职业的先决条件之一。因此,AI CFT旨在包容并普遍适用于所有教师,跨越不同的教育背景,承认他们可能拥有的不同水平的数字专业知识。该框架规定了一种渐进的培训计划规划方法,可以帮助所有教师-包括那些事先没有人工智能知识的教师-从基本的理解和技能掌握逐步发展到更高级的水平。该框架旨在成为一个普遍适用的参考,以规范国家/地方人工智能能力,以及规划课程,培训方案和确保基本的有利环境。这些措施应确保所有教师,无论其起点如何,都有机会促进他们对当地可获得和负担得起的技术的理解和应用,从不插电和低技术解决方案到人工智能丰富的环境。
必须考虑数字技术的动态性以及从前几代ICT工具到人工智能技术的技术飞跃。因此,该框架提供了指导和资源,使教师能够自信地从使用前几代数字技术过渡到使用最新的人工智能系统和工具。鉴于人工智能引发的新道德问题以及人工智能可能提供的潜在变革机会,教师必须具备以人为本的思维方式、道德行为、概念知识和应用技能,以利用人工智能来促进学生的学习和自身的专业发展。该框架旨在培养跨学习环境的可转移能力,包括有效应对人工智能技术快速升级及其对教育不断变化的影响的能力。
2.6教师的终身专业学习
教师发展应被视为一个持续和终身的专业成长之旅,跨越教师的整个职业生涯和生活经历。“教师持续进修计划”提倡以下全面的方法,以支援教师持续进修:
- 通过可转移能力导航个人发展:鉴于人工智能技术的快速发展,相应道德问题的复杂性以及将人工智能融入教学法的挑战,应该帮助教师逐步提高他们的人工智能能力。AI CFT概述了多个层面的能力,以指导这一进展,并提出了培训方法,以帮助教师熟悉新兴技术及其对教学法,伦理学及其社会影响的更广泛影响。
- 指导不断反思和改进实践表现:终身学习需要不断反思和提高自己的实践。人工智能CFT建议对示范课程进行审查,反思教师自己的知识和做法,以及内化价值观和理解。它还鼓励教师在课程设计、实施、反思和重新设计的循环中不断学习。
- 精简培训和支助方案:终身专业学习需要连贯一致的培训和支助。该基金倡导在体制上精简职前准备、在职培训和持续辅导方案,以促进教师在其职业生涯的不同阶段的学习。它强调创建和培养专业发展社区和组织能力建设,支持同行指导和敏捷学习以应对人工智能技术的发展,并促进以人为本的教育方法。
- 调整政策,支持终身专业学习:有利的政策和激励战略对于保持教师进行终身专业学习的积极性至关重要。教师管理政策应该为教师分配足够的时间和资源,让他们参与培训和专业发展活动,并认可或奖励他们在负责任和创新地使用人工智能方面的表现。此外,需要调整广泛的课程和评估系统,为教师对经过验证的人工智能工具和新的教学方法进行试点测试提供空间。此外,还需要审查目前的评估方法是否过度限制了人工智能以人为本的教育潜力的利用,如果是这样,确定如何进行改革。
第三章:教师人工智能能力框架的结构
3.1 AI CFT的尺寸
教师的人工智能能力框架以二维矩阵形式呈现:能力的五个方面跨越三个等级,形成表1所示的十五个模块。
第一个维度包括AI能